Трудности при сварке жаропрочных перлитных сталей. Трудности при сварке: Есть опасность образования горячих трещин из-за повышения степени жёсткости сварной конструкции, многослойности швов, многокомпонентного легирования Напряжение на дуге, В

Технология сварки высоколегированных (нержавеющих) и жаропрочных сталей и сплавов

Температура плавления стали типа 18-8 составляет 1475°С. Такие стали широко применяются в пищевой, химической, авиационно-космической, электротехнической промышленности Подготовка к сварке Кромки стыкуемых деталей из высоколегированных сталей лучше подготавливать механическим способом. Однако допускаются плазменная, электродуговая, газофлюсовая или воздушно-дуговая резка. При огневых способах резки обязательна механическая обработка кромок на глубину 2-3 мм Конструктивные размеры стыковых соединений при сварке высоколегированных сталей

Снимать фаску для получения скоса кромки можно только механическим, способом. Перед сборкой свариваемые кромки защищают от окалины и загрязнений на ширину не менее 20 мм снаружи и изнутри, после чего обезжиривают.

Сборку стыков выполняют либо в инвентарных, приспособлениях, либо с помощью прихваток. При этом необходимо учесть возможную усадку металла шва в процессе сварки. Ставить прихватки в местах пересечения швов нельзя. К качеству прихваток предъявляются те же требования, что и к основному сварному шву. Прихватки с недопустимыми дефектами (горячие трещины, поры и т.д.) следует удалить механическим способом.

Выбор параметров режима. Основные рекомендации те же, что при сварке углеродистых и низколегированных сталей. Главная особенность сварки высоколегированных сталей - минимизация погонной энергии, вводимой в основной металл. Это достигается соблюдением следующих условий:

Рис.100
короткая сварочная дуга;

отсутствие поперечных колебаний горелки;

максимально допустимая скорость сварки без перерывов и повторного нагрева одного и того же участка;

минимально возможные токовые режимы

Техника сварки. Основное правила поддерживать короткую дугу, поскольку при этом расплавленный металл лучше защищен газом от воздуха. При сварке в аргоне W-электродом подавать присадочную проволоку в зону горения дуги следует равномерно, чтобы не допускать брызг расплавленного металла, которые, попадая на основной металл, могут вызвать очаги коррозии. И начале сварки горелкой подогревают кромки и присадочную проволоку. После образования сварочной ванны выполняют сварку, равномерно перемещая горелку по стыку. Необходимо следить за глубиной проплавления, отсутствием непровара. По форме расплавленного металла сварочной ванны определяют качество проплавления: хорошее (ванна вытянута по направлению сварки) или недостаточное (ванна круглая или овальная)




Контрольные вопросы:

1. Зачем в аргон добавляют 2-5% кислорода?

3. Почему сварка высоколегированных сталей выполняется на минимальной погонной энергии?

Контрольное задание:

1. Вам как сварщику необходимо подобрать присадочный материал, силу сварочного тока, подготовку кромок для сварки стали 12Х17

>>Особенности и трудности при сварке алюминия

Особенности и трудности сварки алюминия, дефекты, возникающие в швах

Пористость при сварке алюминия

Алюминиевые термически упрочняемые сплавы склонны к образованию трещин в . Для уменьшения риска их возникновения необходимо уменьшить зону металла, нагреваемую до высоких температур (600-850°C). Для этого необходимо применить концентрированные источники тепла и такие режимы сварки, которые позволят вести её на повышенных скоростях. также позволяет увеличить глубину проплавления и снизить зону нагрева.

Несплавление в корне шва при сваривании алюминия

Несплавление в корне шва - это один из основных дефектов при сварке алюминия неплавящимся электродом. Этот сварочный дефект возникает в том случае, когда силы тока оказывается недостаточно для полного проплавления кромок из-за их сильного окисления при высокотемпературном нагреве.

Чтобы предотвратить несплавление, при сварке корневого шва рекомендуется применять удаляемую подкладку из меди или нержавеющей стали с формирующими канавками глубиной 0,6-1,2мм. Ширина подкладки зависит от свариваемой толщины и составляет 4-10мм.

Если нет возможности применить подкладку, то необходимо защитить корень шва от окисления поддувом инертного газа с обратной стороны, либо выполнить последующую подварку с обратной стороны.

Более полную информацию о дефектах сварных соединений, об их разновидностях и причинах появления вы можете узнать из .

К ним относятся:

  • высокое содержание углерода (чем выше, тем хуже сваривается);
  • высокая жидкотекучесть;
  • возможность образования в процессе сварки тугоплавких окислов (их температура плавления гораздо выше температуры плавления самого чугуна);
  • склонность к появлению трещин (из-за неоднородности металла), пор (из-за выгорания в процессе сварки углерода).

Все это негативно сказывается на свариваемости и чугун справедливо считают материалом, который плохо поддается сварке. Особенно когда сварку производят дома и нет возможности узнать, какой же марки чугун сваривается. Многие судят о свариваемости чугунного изделия по его излому.

Если излом черный или темно-серый, то придется поднатужиться, чтобы восстановить первоначальные его свойства или вообще не заниматься сварочными работами, не имея специальных электродов и не зная тонкостей технологии.

Основные виды сварки

Специалисты используют 2 вида сварки чугуна – холодный способ и горячий. При холодной сварке необходимо применение электродов, специально предназначенных для сварки чугуна.

Можно сваривать чугунные изделия в холодном состоянии (без подогрева) с применением стальных электродов, изготовленных из низкоуглеродистой стали, но это требует больших усилий от сварщика и понимания им процессов, которые происходят в зоне сварки. Обусловлено этой свойствами чугуна. Металл после окончания сварки быстро охлаждается и это приводит к его хрупкости, что может вызвать появление трещин.

Сварка чугуна - технология сварка изделий из чугуна. Чугун является трудносвариваемый металлом. Он сваривается плавящимися или неплавящимися электродами с подогревом или без него. Чугун представляет собой сплав железа с углеродом. Содержание углерода в чугуне - около 2,14%. Углерод придаёт сплавам железа твёрдость, снижает пластичность и вязкость. Углерод в чугуне содержатся в виде цементита и графита.

Температура плавления чугуна - от 1 150 до 1 200 °C , что на 300 °C ниже, чем у чистого железа. Теплопроводность чугуна ниже, чем у сталей, коэффициент теплового расширения такой же. Электропроводность чугуна зависят от распределения включений графита.

При быстром охлаждении чугуна от температуры более 750°С металла, графит превращается в цементит, при это чугун превращается из серого в белый. Образуется закаленная структура с внутренними напряжениями, приводящими к трещинам.

рудности сварки чугуна обусловлены образованием трещин из-за включений графита; выгоранием углерода и образованием пор в шве; образованием тугоплавких окислов с температурой плавления выше, чем у чугуна; его высокая жидкотекучесть.



Чугун сваривается ручной дуговой сваркой плавящимися (ЦЧ-4) или неплавящимися (вольфрамовый, угольны, графитовый) электродами в подогревом или без него. Сварочные напряжения, возникающие в шве при охлаждении металла снимаются проковкой швов.

При холодной сварке чугуна используются железно-никелевые, медно-железные, железно-медно-никелевые электроды следующих марок:

· медно-железные электроды: ОЗЧ-2 и ОЗЧ-6;

· никелевые и железно-никелевые электроды: ОЗЖН-1, ОЗЧ-3, ОЗЧ-4;

· железно-медно-никелевые электроды: МНЧ-2.

При горячей сварке металл предварительно подогревается до 500-700°С. Используются чугунные электроды со стержнями марок А и Б - ОМЧ-1 и УЗТМ-74. Электроды должны быть большого диаметра - от 8 до 16 мм.

Для повышения качества шва при сварке чугуна проводится подогрев детали и ее медленное охлаждение после сварки.

Способы сварки чугуна

Сварка чугуна применяется в ремонтных целях и для изготовления сварнолитых конструкций. К сварным соединениям чугунных деталей в зависимости от типа и условий эксплуатации предъявляют требования по механической прочности, плотности (водонепроницаемость, газонепроницаемость) и обрабатываемости режущим инструментом. Обеспечить эти требования при сварке весьма сложно из-за физико-химических особенностей чугуна.

Трудности, возникающие при сварке чугуна, обусловлены, как правило, низкой стойкостью металла сварного соединении против образования трещин плохой его обрабатываемостью на механических станках.

Низкая стойкость основного металла и металла околошовной зоны против образования трещин характерна для чугуна пониженным запасом деформационной способности (пониженная прочность и пластичность).



Указанные особенности чугуна являются следствием нарушения сплошности его металлической основы включениями графита, а также склонностью его к отбелке и закалке даже при небольших скоростях охлаждения. Эти свойства чугуна определяются высоким содержанием углерода в нем.

Соединение чугунных деталей между собой выполняют газовой сваркой, пайкой, термитной сваркой, литейной сваркой, дуговой сваркой и электрошлаковой.

Сварку ведут без подогрева (холодный способ сварки),с местным подогревом и с общим подогревом всего изделия. Для дуговой сварки используют угольные, графитовые, стальные и легированные электроды, а также электроды из цветных металлов. Подготовку мест под сварку выполняют механическим путем или огневым способом. Для удержания расплавленного металла сварочной ванны (чугун жидкотекуч) применяют специальиые формовки. Назначение формовки - удерживать расплавленный металл. Формовочная масса имеет следующий состав: кварцевый песок, замешанный на жидком стекле 40%, формовочная земля 30% и белая глина 30%.

Подготовленная к сварке деталь подвергается общему или местному подогреву до температуры 350 - 450º С. Иногда для особо сложных деталей подогрев производят до температуры 550-600° С.

Сварку выполняют как на переменном, так и на постоянном токе. Величину тока подбирают из расчет 50-90 А на 1 мм диаметра электрода.

Особенности сварки меди

обусловлены ее физическими и химическими свойствами. Медь имеет температуру плавления 1080-1083°С. При температурах 300-500°С она обладает горячеломкостью. Жидкая медь растворяет кислород и водород. С кислородом она образует закись меди Cu 2 O, температура плавления которой на 20° ниже температуры плавления чистой меди.

{\displaystyle {\mathsf {4Cu\ +\ O_{2}\ {\xrightarrow {>200\ ^{\circ }C}}\ 2Cu_{2}O}}}

Наличие закиси приводит к образованию горячих трещин после сварки. Проявление «водородной болезни меди» обусловлено тем, что при химическом соединении водорода с кислородом образуется стремящийся расшириться водяной пар, то, в свою очередь, приводит к трещинам в металле шва.

Медь имеет высокую тепло- и электропроводностью. Теплопроводность меди в 6-7 раз превышающей теплопроводность стали, она имеет также хорошую жидкотекучестью в расплаве.

Удельная электропроводность меди при 20 °C: 55,5-58 МСм/м .

Свариваемость меди максимальна в отсутствии примесей. Примеси свинца, мышьяка и др. затрудняют сварку. При сварке медь не должна загрязняться примесями. Металлы в примеси с медью - хром, марганец, железо и др. способствуют повышению прочности шва.

Особенности сварки[править | править вики-текст]

Сварка меди и сплавов может проводиться газовой сваркой. При ручная дуговой сварке покрытыми электродами возможно загрязнение металла шва легирующими компонентами. Из-за большой теплопроводности меди при дуговой сварке надо применять больший ток.

Поскольку при сварке образуется закись меди, то сварку надо проводить быстро, со скоростью около 0,25 м/мин. Для сварки меди толщиной от 6 мм используют предварительный подогрев заготовок.

Особенности дуговой сварки трубопроводов из меди и медно-никелевого сплава. Основные типы, конструктивные элементы и размеры соединений из меди и медно-никелевого сплава

Особенности сварки алюминия и его сплавов связана с физическими и химическими свойства металла. Алюминий имеет малый удельный вес - 2, 7 г / см3 , высокую электро- и теплопроводность, на его поверхности есть окисная пленка, имеющая высокую температуру плавления 2044°C, температура же плавления самого алюминия - около 660°C. Сплавы алюминия с марганцем, кремнием, магнием и медью обладают большей прочностью, чем сам алюминий.

Тугоплавкая пленка на каплях расплавленного металла, препятствует сплавлению металла, поэтому при сварке необходима защита от воздуха. Такой защитой может быть сварка алюминия в среде с аргоном.

Значительная жидкотекучесть алюминия затрудняет управление сварочной ванной. Для быстрейшего охлаждения металла необходимо использование теплоотводящих подкладок.

Сварочное соединение алюминия и его сплавов склонно к образованию кристаллизационных трещин, что обусловлено растворением в металле водорода. В сплавах алюминия трещины возникают из-за повышенного содержания кремния. Металл обладает большой усадкой, что является причиной деформаций при остывании заготовок.

Значительная теплопроводность алюминия требует применения сварочного тока, превосходящего в несколько раз ток при сварке сталей .

Способы сварки[править | править вики-текст]

Сварка алюминия производится с разрушением оксидной пленки (очистка и обезжиривание) на его поверхности и защитой с помощью инертных газов. Перед сваркой металл подогревают. Подогрев металла проводится до температуры 250-300°С для заготовок средних толщин, и до 400°С - для толстых. Распространены следующие способы сварки:

· сварка вольфрамовым электродом в инертных газах (режим AC TIG);

· сварка полуавтоматами в среде инертных газов и автоматизированной подачей проволоки (режим DC MIG);

· сварка покрытыми плавящимися электродами без использования защитного газа (режим MMA).

Сразу после детали промываются водой, а со шва удаляется шлак.

Разнородная сварка[править | править вики-текст]

Алюминий можно сваривать с другими металлами. Особенности разнородной сварки металлов заключается в различии их температуры плавления, плотности, в коэффициентах линейного расширения. Процесс затруднен свойствами самого алюминия.

Сварка стали с алюминием и его сплавами выполняется аргонодуговой сваркой с вольфрамовым электродом. Перед сваркой кромки металлов очищаются и на них наносятся активирующее покрытие. Наиболее дешевое из них - цинковое. В качестве присадочного материала используется проволока марки АД1 из чистого алюминия с присадкой кремния.

Особенностью сварки алюминия со сталью является расположение сварочной дуги:при сварке встык дуга ведется по кромке алюминиевой детали, а присадка ведется по кромке стальной детали. При этом жидкий алюминий натекает на поверхность стали, покрытой цинком.

Основная трудность сварки титана - это необходимость надежной защиты металла, нагреваемого выше температуры 400 °C, от воздуха, так как на его поверхности под действием воздуха образуется оксидная пленка. Металл обладает высокой химической активностью по отношению к кислороду, азоту и водороду при его нагреве и расплавлении. Водород в небольшом количестве сильно ухудшает свойства титана.

К основным способам сварки титана и его сплавов относятся:

· дуговая сварка в среде инертных газов неплавящимся или плавящимся электродом;

· дуговая сварка титана под флюсом;

· электрошлаковая сварка;

· электронно-лучевая сварка;

· контактная сварка.

Дуговая сварка титана проводится в среде газа аргона или в его смесях с гелием. Сварку производят под местной защитой. Газ проходит через сопло горелки с насадками, увеличивающими зону защиты. С обратной стороны стыка свариваемых деталей устанавливают медные подкладные планки с канавкой, по длине которой равномерно подают аргон. При сложной конструкции деталей сварка проходит с общей защитой в специальных камерах с контролируемой атмосферой. Камеры могут представлять собой камеры-насадки для защиты части свариваемого узла, жесткие камеры из металла или мягкие камеры, сделанные из ткани и имеющими смотровые окна и встроенные рукавицы для рук сварщика. В камеры помещаются свариваемые детали, сварочная оснастка и горелка. Для крупных узлов применяют большие металлические камеры объёмом до 350 куб. м., в них устанавливают сварочные автоматы и манипуляторы. Из камеры откачивается воздух, она наполняются аргоном, через шлюзы в камеры входят сварщики в скафандрах и проводят сварку.

Титановые сплавы из-за высокой химической активности сваривают дуговой сваркой в инертных газах неплавящимся и плавящимся электродом, дуговой сваркой под флюсом, электронным лучом, электрошлаковой и контактной сваркой. Расплавленный титан жидкотекуч, его шов хорошо формируется при всех способах сварки.

Дуговую сварку титановых сплавов выполняют плавящимся электродом (проволока диаметром от 1,2 до 2,0 мм) на постоянном электрическом токе обратной полярности в режимах, обеспечивающих мелкокапельный перенос электродного металла. Защитной средой при этом является смесь - 20 % аргона и 80 % гелия или чистый гелий. При этом увеличивается ширина шва и уменьшается его пористость.

Титановые сплавы можно также сваривать дуговой сваркой под бескислородными фтористыми флюсами сухой грануляции марки АНТ1, АНТЗ для толщины 2,5...8,0 мм и марки АНТ7 для толстого металла. Сварка ведется с использованием электродной проволоки диаметром от 2,0 до 5,0 мм с вылетом электрода на 14 - 22 мм на медной подкладке или на флюсовой подушке. Структура металла сварного шва в результате модифицирующего действия флюса получается более мелкозернистой, чем при сварке титана в инертных газах.

Температура плавления меди 1083°С

Марка

Свариваемость

Технологические особенности сварки

Медь катодная

Электродная проволока Бр.КМц 3-1; МНЖКТ-5-1 -0,2-0,2; Бр.ОЦ 4-3; Бр.ОЦ 4-3; БР.Х 0,7

При толщине более 8-10 мм необходим предварительный подогрев до 200-300°С

М00к, М0к, М1к

Хорошая

Медь раскисленная

Mlp, М2р, МЗр

Медь рафинированная

Хорошая

Бронзы оловянные литейные

Электродная проволока той же марки, что и основной металл

При толщине более 10-15 мм необходим предварительный подогрев до 500-600°С

Защитные газы Ar, Не, N 2

Бр03Ц12С5, Бр05Ц5С5, Бр08Ц4, Бр010Ф1, Бр010Ц2

Удовлетворительная

Бр03Ц7С5Н1, Бр04Ц7С5, Бр010С10

Бронзы безоловянистые литейные

БрА9Мц2Л, БрА10ЖЗМц2, БрА11Ж6Н6, БрА7Мц15Ж3Н2ц2

Удовлетворительная

Бронзы деформируемые

Бр0ф7-0,2, БрХ1, БрКМц3-1, БрБ2

БрАМц9-2, БрАЖН9-5-2, БрАЖ9-4, БрСр1

Удовлетворительная

БрА5, БрА7

Латуни деформируемые

Электродная проволока Бр.ОЦ 4-3; Бр.КМц 3-1; ЛК62-0,5; ЛК80-3; ЛМц59-0,2

При толщине более 12 мм необходим предварительный подогрев до 300-350°С

JI96, ЛА77-2, ЛК80-2

ЛМцС58-2, ЛС3, Л062-1

Удовлетворительная

ЛС59-1, ЛС60-1

Медь и сплавы на ее основе - бронзы, латуни, медно-никелевые сплавы качественно свариваются способом MIG/MAG в инертных газах.

Трудности при сварке

Высокая теплопроводность меди (в 6 раз выше, чем у железа) осложняет сварку соединений с несимметричным теплоотводом;

Большая жидкотекучесть (в 2--2,5 раза выше, чем у стали) затрудняет сварку вертикальных и потолочных швов;

Интенсивное окисление с образованием закиси меди (Cu 2 О), хорошо растворяемой в расплавленном металле, приводит к образованию трещин;

Активная способность меди поглощать газы (кислород и водород) при расплавлении приводит к пористости шва и горячим трешинам

Большой коэффициент линейного расширения меди (в 1,5 раза выше чем у стали) влечет та собой значительные деформации и напряжения

Подготовка к сварке

Разделку меди и ее сплавов на мерные заготовки можно выполнять шлифовальной машинкой, труборезом, на токарном или фрезерном станке, а также плазменно-дуговой резкой.

Кромки под сварку подготавливают механическим способом. Для меди толщиной 6-18 мм рекомендуются V- и X-образные разделки.

Свариваемые детали и присадочную проволоку очищают от окислов и загрязнений до металлического блеска и обезжиривают. Механическую зачистку кромок выполняют наждачной бумагой, металлическими щетками и т.д. Использовать наждачную бумагу и абразивный камень с крупным зерном не рекомендуется.

Главное при сварке меди - защита сварочной ванны от кислорода. Она достигается при помощи раскисления фосфором, алюминием и серебром. Поэтому следует использовать электродную проволоку, легированную этими раскислителями.

Свариваемые кромки и присадочную проволоку можно очищать травлением в растворе, состоящем из:

  • 75 см 3 /л HNO 2 ;
  • 100см 3 /л H 2 SO 4:
  • 1 см 3 /л НСl

с последующей промывкой в воде и щелочи и сушкой горячим воздухом.

Предварительный подогрев конструкций с толщиной стенки 10-15 мм возможен газовым пламенем, рассредоточенной дугой или другими способами.

Сборку стыков под сварку ведут либо в приспособлениях, либо с помощью прихваток. Зазор в стыкуемых заготовках соблюдают одинаковым на всем протяжении. Прихватки должны быть минимального сечения, чтобы в процессе сварки их можно было переплавить. Поверхность прихваток необходимо очистить и осмотреть, чтобы на них не было горячих трещин. При сварке в нижнем положении используют графитовые подкладки или медные пластины, охлаждаемые водой.

Выбор параметров режима сварки

Плавящимся электродом в защитных газах эффективнее всего сваривать медь толщиной не менее 6-8 мм. Сварку ведут на постоянном токе обратной полярности.

Медь хорошо сваривается плавящимся электродом в аргоне, азоте, в смеси аргона с азотом и в гелии. Из-за высокой теплопроводности меди для получения надежного провара в начале сварки и хорошего сплавления кромок детали подогревают до 200-500°С. При сварке в аргоне подогрев необходим при толщине металла более 4,5 мм, а в азоте - более 8 мм

Одним из важнейших параметров режима сварки меди плавящимся электродом является длина дуги. Шов качественно формируется при длине дуги 4-5 мм.

Стыковые соединения сваривают на подкладных элементах. Импульсно-дуговая сварка (ИДС) в аргоне дает возможность выполнять вертикальные и потолочные швы, позволяет сваривать тонкий металл. При сварке в азоте процесс идет с короткими замыканиями (КЗ) с повышенным разбрызгиванием или крупнокапельным переносом (КР)

Техника сварки

Для повышения стойкости металла шва к образованию горячих трещин рекомендуются проволоки Бр.АЖНМц 8,5-4-5-1,5; Бр.МцФЖН 12-8-3-3; ММц40, Механические свойства сварных соединений в этом случае соответствуют свойствам основного металла.

Ориентировочные режимы сварки меди в нижнем положении

Вид соединения

Размеры, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В Скорость сварки, м/ч Диаметр электрода, мм Вылет электрода, мм Расход газа, л/мин

ИДС
КЗ

80-110
80-110

18-20
18-20

0,8-1,2
0,8

10-14
10-12

ИДС
КЗ
КЗ

Ar
N 2
Ar

140-210
140-200
140-200

19-23
20-25
19-23

25-35
25-35
25-30

0,8-1,6
0,8-1,2
0,8-1,2

10-18
10-14
10-14

8-10
8-9
8-10

КЗ
СТР
ИДС

N 2
Ar
Ar

250-320
250-320
250-320

24-27
23-26
23-28

22-28
20-25
20-25

1-1,4
1-1,6
1,2-3

10-16
10-18
12-30

СТР
СТР
КР

Ar
He
N 2

350-550
300-500
300-500

32-37
33-38
34-39

18-20
20-22
20-28

2-3
1,6-3
1,6-3

20-35
18-35
18-35

14-16
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

300-500
270-500
280-500

28-36
32-38
32-39

16-18
18-22
18-22

2-4
1,5-3
1,5-3

20-40
18-35
18-35

14-18
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

350-680
350-650
350-650

32-39
34-42
35-42

16-18
16-20
16-20

2-4
2-4
2-4

14-18
30-50
14-18

Медь сваривают с минимальным числом проходов.

Сварку ведут "углом вперед" справа налево. Для формирования обратной стороны шва стыковых соединений используют графитовые или медные водоохлаждаемые подкладки. Двухсторонние соединения выполняют с формированием шва на весу или по подварочному шву наложенному ручной аргонодуговой сваркой W-электродом.

Бронзы

Бронзы - сплавы меди с алюминием. Их обозначают двумя буквами "Бр" начальными буквами русских названий легирующих элементов и рядом чисел, указывающих содержание этих элементов в %.

Так, марка БрАЖМц 10-3-1,5 означает, что бронза содержит 10% алюминия, 3% железа, 1,5% марганца. В конце некоторых марок литейных бронз ставится буква "Л".

Ориентировочные режимы сварки бронз Бр.АМц 9-2, Бр.АЖМц 9-5-2 и латуни ЛМНЖ 55-3-1 в аргоне в нижнем положении (постоянный ток, обратная полярность, проволока Бр. АМц 9-2)

Вид соединения

Размер, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В

Скорость сварки м/ч

Диаметр электрода, мм

Вылет электрода, мм

Расход газа, л/мин

0 +1

ИДС
КЗ

150-190
160-190

23-26
22-25

20-25
20-25

1-1,5
1-1,5

10-16
10-16

0 +1,5

ИДС
КЗ

140-220
160-220

23-26
22-26

20-22
20-22

1-1,5
1-1,5

10-16
10-16

10-12
10-12

СТР
СТР

300-400
375-450

29-33
31-36

25-32
30-35

20-35
20-35

12-16
14-16

0 +2
0 +2

Трудность сваривания бронз объясняется их повышенной жидкотекучестью. При сварке бронз возникают трудности, вызванные образованием окиси алюминия, поэтому способ и технологию сварки выбирают такими, как и при сварке алюминия, а режимы - характерные для медных сплавов.

Латуни

Сплавы меди с цинком - это латуни , или медноцинковые латуни. Для улучшения свойств в сплав добавляют Al, Mn, Ni, Fe, Sn, Si и др. Такие латуни называются специальными.

Латуни обозначают буквой "Л", справа от которой пишут буквенное обозначение специально вводимых элементов (кроме Zn). затем цифру, указывающую процент меди, и наконец, проценты специально вводимых добавок в той же последовательности, в какой записаны сами элементы. В маркировке элементы обозначаются русскими буквами: Л - алюминий, Б -бериллий, О - олово, С - свинец, Н - никель, Мц - марганец, К - кремний, Мг - магний, X - хром, Ц - цинк.

ЛТ 96 - (томпак) означает медно-цинковую латунь с содержанием 96% меди и 4% цинка.

Л 68 - медноцинковая латунь с содержанием 68% меди и 32% цинка.

ЛАЖМц 70-6-3-1 - это специальная латунь с содержанием 70% меди, 6% алюминия, 3% железа, 1% марганца, 20% цинка.

Особенность сварки латуней - интенсивное испарение цинка при температуре 907°С. При этом ухудшаются механические свойства сварного соединения. Для уменьшения выгорания цинка эффективны сварка на пониженной мощности дуги, применение присадочной проволоки с кремнием, который создает на поверхности сварочной ванны окисную пленку (SiO 2), препятствующую испарению цинка.

Защитный газ необходимо предварительно просушить или добавить к нему 2-5% кислорода. Это обеспечит плотность шва.

Нужно поддерживать самую короткую дугу и добиваться получения шва с низким коэффициентом формы (отношением ширины шва к его толщине). Иначе в металле шва и околошовной зоны появятся горячие (кристаллизационные) трещины.

После сварки металл должен как можно быстрее остыть. Для этого используют медные, охлаждаемые водой, подкладки; промежуточное остывание слоев; охлаждение швов водой. Это повысит коррозионную стойкость сварного соединения

Конструктивные размеры стыковых соединений при сварке высоколегированных сталей

Снимать фаску для получения скоса кромки можно только механическим, способом. Перед сборкой свариваемые кромки защищают от окалины и загрязнений на ширину не менее 20 мм снаружи и изнутри, после чего обезжиривают.

Сборку стыков выполняют либо в инвентарных, приспособлениях, либо с помощью прихваток. При этом необходимо учесть возможную усадку металла шва в процессе сварки. Ставить прихватки в местах пересечения швов нельзя. К качеству прихваток предъявляются те же требования, что и к основному сварному шву. Прихватки с недопустимыми дефектами (горячие трещины, поры и т.д.) следует удалить механическим способом.

Выбор параметров режима. Основные рекомендации те же, что при сварке углеродистых и низколегированных сталей. Главная особенность сварки высоколегированных сталей - минимизация погонной энергии, вводимой в основной металл. Это достигается соблюдением следующих условий:

Рис.100
короткая сварочная дуга;

отсутствие поперечных колебаний горелки;

максимально допустимая скорость сварки без перерывов и повторного нагрева одного и того же участка;

минимально возможные токовые режимы

Техника сварки. Основное правила поддерживать короткую дугу, поскольку при этом расплавленный металл лучше защищен газом от воздуха. При сварке в аргоне W-электродом подавать присадочную проволоку в зону горения дуги следует равномерно, чтобы не допускать брызг расплавленного металла, которые, попадая на основной металл, могут вызвать очаги коррозии. И начале сварки горелкой подогревают кромки и присадочную проволоку. После образования сварочной ванны выполняют сварку, равномерно перемещая горелку по стыку. Необходимо следить за глубиной проплавления, отсутствием непровара. По форме расплавленного металла сварочной ванны определяют качество проплавления: хорошее (ванна вытянута по направлению сварки) или недостаточное (ванна круглая или овальная)

Контрольные вопросы:

1. Зачем в аргон добавляют 2-5% кислорода?

3. Почему сварка высоколегированных сталей выполняется на минимальной погонной энергии?

Контрольное задание:

1. Вам как сварщику необходимо подобрать присадочный материал, силу сварочного тока, подготовку кромок для сварки стали 12Х17

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «derevyannyydom.ru» — Строим новый дом