Привет студент. Проектирование асинхронного двигателя с короткозамкнутым ротором P В - сумма потерь, отводимых в воздух внутри двигателя

Подробности Опубликовано 27.12.2019

Дорогие читатели! Коллектив библиотеки поздравляет вас с Новым годом и Рождеством! От всей души желаем счастья, любви, здоровья, успехов и радости вам и вашим семьям!
Пусть грядущий год подарит вам благополучие, взаимопонимание, гармонию и хорошее настроение.
Удачи, процветания и исполнения самых заветных желаний в новом году!

Тестовый доступ к ЭБС Ibooks.ru

Подробности Опубликовано 03.12.2019

Уважаемые читатели! До 31.12.2019 нашему университету предоставлен тестовый доступ к ЭБС Ibooks.ru , где вы сможете ознакомиться с любой книгой в режиме полнотекстового чтения. Доступ возможен со всех компьютеров сети университета. Для получения удалённого доступа необходима регистрация.

«Генрих Осипович Графтио - к 150 - летию со дня рождения»

Подробности Опубликовано 02.12.2019

Уважаемые читатели! В разделе "Виртуальные выставки" размещена новая виртуальная выставка «Генрих Осипович Графтио». В 2019 году исполняется 150 лет со дня рождения Генриха Осиповича - одного из основателей гидроэнергетической отрасли нашей страны. Ученый-энциклопедист, талантливый инженер и выдающийся организатор, Генрих Осипович внес огромный вклад в развитие отечественной энергетики.

Выставка подготовлена сотрудниками отдела научной литературы библиотеки. На выставке представлены труды Генриха Осиповича из фонда истории ЛЭТИ и публикации о нём.

Ознакомиться с выставкой Вы можете

Тестовый доступ к Электронно-библиотечной системе IPRbooks

Подробности Опубликовано 11.11.2019

Уважаемые читатели! C 08.11.2019 г. по 31.12.2019 г. нашему университету предоставлен бесплатный тестовый доступ к крупнейшей российской полнотекстовой базе данных - Электронно-библиотечной системе IPR BOOKS . ЭБС IPR BOOKS содержит более 130 000 изданий, из которых более 50 000 - уникальные учебные и научные издания. На платформе Вам доступны актуальные книги, которые невозможно найти в открытом доступе в сети Интернет.

Доступ возможен со всех компьютеров сети университета.

Для получения удаленного доступа необходимо обратиться в отдел электронных ресурсов (ауд. 1247) к администратору ВЧЗ Склеймовой Полине Юрьевне или по электронной почте [email protected] с темой "Регистрация в IPRbooks".

ФГБОУ ВПО «Югорский государственный университет»

Кафедра «Энергетика»

Карминская Т.Д., Ковалёв В.З., Беспалов А.В, Щербаков А.Г.

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

Учебное пособие

для выполнения курсового проектирования по

дисциплине «Электрические машины»

для бакалавров, обучающихся по

направлению подготовки 13.03.02 «Электроэнергетика и электротехника»

Ханты-Мансийск 2013

В данном учебном пособии описывается методика проектирования асинхронного двигателя с короткозамкнутым ротором, которая необходима для выполнения задания по курсовому проектированию. В ходе выполнения курсового проектирования решаются такие задачи как выбор главных размеров двигателя, расчёт параметров и магнитной системы обмотки статора, расчёт параметров и магнитной системы обмотки ротора, определение параметров схемы замещения и построение механической и рабочих характеристик асинхронного двигателя.

Учебное пособие составлено в соответствие с рабочими программами курсов «Электрические машины» для студентов направления 13.03.02 «Электроэнергетика и электротехника». Оно может быть полезно студентам других электрических и электромеханических направлений и специальностей, а также специалистам, занимающимся исследованиями, проектированием и эксплуатацией асинхронных машин различного назначения.

Введение

Исходные данные для проектирования

Варианты заданий для проектирования

Глава 1. Методика проектирования асинхронного двигателя с короткозамкнутым ротором

1.1. Выбор главных размеров двигателя.

1.2. Расчёт параметров обмотки статора

1.3. Расчёт параметров воздушного зазора

1.4. Расчёт параметров обмотки ротора.

1.5. Расчёт тока намагничивания

1.6. Расчёт параметров рабочего режима двигателя

1.7. Расчёт активных потерь в двигателе

1.8. Расчёт рабочих характеристик двигателя

1.9. Расчет пусковых характеристик.

Глава 2. Применение эвм для проектирования асинхронного двигателя с короткозамкнутым ротором.

2.1. Описание программы «АД–КП»

2.2. Пример применения программы «АД – КП»

Заключение

ПРИЛОЖЕНИЯ

Список литературы

Введение.

Асинхронная машина – бесколлекторная машина переменного тока, у которой отношение частоты вращения ротора к частоте тока в цепи, к которой машина подключена, зависит от нагрузок. Как любая электрическая машина, асинхронная машина обладает свойством обратимости, т.е. может работать как в двигательном, так и генераторном режимах. Однако на практике наибольшее распространение получил двигательный режим работы машины. На сегодняшний день асинхронный двигатель является основным двигателем большинства механизмов и машин. Более 60 % всей вырабатываемой электрической энергии потребляется электрическими машинами, при этом значительную долю в этом потреблении (примерно 75 %) составляют асинхронные двигатели. Достаточно широкое распространение асинхронные двигатели получили благодаря следующим своим достоинствам: небольшие габаритные размеры, простота конструкции, высокая надёжность, высокое значение КПД, относительно низкая стоимость. К недостаткам асинхронного двигателя относят: трудности при регулировании скорости вращения, большие пусковые токи, низкое значение коэффициента мощности при работе машины в режиме близком к холостому ходу. Первый и второй из недостатков могут быть компенсированы применением преобразователей частоты, использование которых расширило область применения асинхронных машин. Благодаря преобразователям частоты асинхронный двигатель широко внедряется в области, где традиционно использовались другие виды электрических машин, прежде всего машины постоянного тока.

Поскольку существующим асинхронным двигателям свойственны ряд недостатков со временем постоянно разрабатываются новые серии асинхронных двигателей, имеющих более высокие технико-экономические показатели по сравнению с предыдущими сериями асинхронных двигателей, лучшие по качественным показателям рабочие и механические характеристики. Кроме этого, часто возникают потребности в разработке и модернизации асинхронных двигателей специального исполнения. К таким двигателям можно отнести:

погружные асинхронные двигатели (ПЭД) применяемые для привода установок электроцентробежных насосов (УЭЦН). Особенность конструкции таких двигателей – ограниченность в размерах наружного диаметра, размеры которого заданы диаметром насосно-компрессорной трубы, в которой двигатель располагается. Кроме этого, двигатель эксплуатируется при достаточно высоких температурах, что приводит к снижению его развиваемой мощности. Указанные обстоятельства требуют разработки специальной конструкции асинхронных двигателей;

двигатели, работающие совместно с частотными преобразователями, которые выполняют функции их регулирования. Поскольку преобразователи частоты приводят к генерации целого спектра гармонических составляющих в кривой напряжения питания двигателя, наличие гармонических составляющих приводит к появлению дополнительных потерь в двигателе и снижению его КПД ниже номинального. Конструкция асинхронного двигателя, работающего совместно с преобразователями частоты должна учитывать данную особенность и наличие в кривой напряжения питания высших гармоник не должно приводить к дополнительным потерям мощности.

Указанный список асинхронных двигателей специального исполнения может быть продолжен, и отсюда можно сделать следующие выводы:

существует необходимость в разработке новых серий асинхронных двигателей;

существует необходимость в освоении существующих методик проектирования асинхронных двигателей для решения указанной выше задачи;

существует необходимость в разработке новых методик проектирования асинхронных двигателей, позволяющих при меньших затратах времени на проектирование разрабатывать новую серию асинхронных двигателей с лучшими технико-экономическими показателями.

Цель выполнения задания на курсовое проектирование – разработка асинхронного двигателя с короткозамкнутым ротором, имеющего заданные параметры, на основе существующей и широко применяемой на практике методике проектирования асинхронных двигателей.

Исходные данные для проектирования.

Разрабатываемый асинхронный двигатель с короткозамкнутым ротором должен иметь следующие паспортные данные:

    Номинальное (фазное) напряжение питания U 1нф, В;

    Частота напряжения питания сети f 1 , Гц;

    Число фаз напряжения питания m 1

    Номинальная мощность Р 2 , кВт;

    Синхронная скорость вращения n 1 , об/мин;

    Номинальное значение КПД η (не менее), отн. ед.;

    Номинальное значение коэффициента мощности cos(φ) (не менее), отн. ед.;

    Конструктивное исполнение;

    Исполнение по способу защиты от воздействия окружающей среды;

В ходе выполнение курсового проектирования необходимо спроектировать асинхронный двигатель с короткозамкнутым ротором имеющий указанные паспортные данные, и сравнить основные показатели полученного асинхронного двигателя с показателями аналогичного двигателя, выпускаемого промышленностью (в качестве аналогов рассматривать асинхронные двигатели серии АИР, паспортные данные которых приводятся в ПРИЛОЖЕНИИ 1)

Результаты расчёта оформить в виде пояснительной записки.

Выполнить чертёж разработанного асинхронного двигателя и представить его на формате А1.

Примечание: данное учебное пособие по курсовому проектированию выполнено в виде рабочей тетради, которая может служить образцом для оформления расчётов в виде пояснительной записки. В ней приводится так же пример расчёта асинхронного двигателя с короткозамкнутым ротором, имеющем следующие исходные данные:

n 1 , об/мин

не менее

Cos(φ), о.е.

не менее

Конструктивное исполнение – IM1001;

Исполнение по способу защиты от воздействия окружающей среды – IP44;

Варианты заданий для проектирования.

Номер варианта

Исходные данные для проектирования

n 1 , об/мин

не менее

Для всех вариантов задания одинаковые значения имеют следующие паспортные данные проектируемых двигателей:

Напряжение питания (фазное значение) U 1фн, В – 220;

Частота питающего напряжения f 1 , Гц – 50;

Число фаз напряжения питания m 1 – 3;

Конструктивное исполнение IM1001;

Исполнение по способу защиты от воздействия окружающей среды IP44;

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РЕСПУБЛИКИ КАЗАХСТАН

Северо-Казахстанский государственный университет им. М. Козыбаева

Факультет энергетики и машиностроения

Кафедра энергетики и приборостроения

КУРСОВАЯ РАБОТА

На тему: «Проектирование асинхронного двигателя с короткозамкнутым ротором»

по дисциплине – «Электрические машины»

Выполнил Калантырев

Научный руководитель

д.т.н., проф. Н.В. Шатковская

Петропавловск 2010


Введение

1. Выбор главных размеров

2. Определение числа пазов статора, витков в фазе обмотки сечения провода обмотки статора

3. Расчёт размеров зубцовой зоны статора и воздушного зазора

4. Расчёт ротора

5. Расчёт магнитной цепи

6. Параметры рабочего режима

7. Расчёт потерь

8. Расчёт рабочих характеристик

9. Тепловой расчёт

10. Расчёт рабочих характеристик по круговой диаграмме

Приложение А

Заключение

Список литературы


Введение

Асинхронные двигатели являются основными преобразователями электрической энергии в механическую и составляют основу электропривода большинства механизмов. Серия 4А охватывает диапазон номинальных мощностей от 0,06 до 400 кВт и имеет 17 высот оси вращения от 50 до 355 мм.

В данном курсовом проекте рассматривается следующий двигатель:

Исполнение по степени защиты: IP23;

Способ охлаждения: IС0141.

Конструктивное исполнение по способу монтажа: IM1081 – по первой цифре – двигатель на лапах, с подшипниковыми щитами; по второй и третьей цифрам – с горизонтальным расположением вала и нижним расположением лап; по четвертой цифре – с одним цилиндрическим концом вала.

Климатические условия работы: У3 – по букве – для умеренного климата; по цифре – для размещения в закрытых помещениях с естественной вентиляцией без искусственно регулируемых климатических условий, где колебания температуры и влажности воздуха, воздействия песка и пыли, солнечной радиации существенно меньше, чем на открытом воздухе каменные, бетонные, деревянные и другие, не отапливаемые помещения.


1. Выбор главных размеров

1.1 Определим число пар полюсов:

(1.1)

Тогда число полюсов

.

1.2 Определим высоту оси вращения графически: по рисунку 9.18, б

, в соответствии с , по таблице 9.8 определим соответствующий оси вращения наружный диаметр .

1.3 Внутренний диаметр статора

, вычислим по формуле: , (1.2) – коэффициент определяемый по таблице 9.9. лежит в промежутке: .

Выберем значение

, тогда

1.4 Определим полюсное деление

: (1.3)

1.5 Определим расчётную мощность

, Вт: , (1.4) – мощность на валу двигателя, Вт; – отношение ЭДС обмотки статора к номинальному напряжению, которое может быть приближенно определено по рисунку 9.20. При и , .

Приближенные значения

и возьмём по кривым, построенным по данным двигателей серии 4А. рисунок 9.21, в. При кВт и , , а

1.6 Электромагнитные нагрузки А и В d определим графически по кривым рисунок 9.23, б. При

кВт и , , Тл.

1.7 Обмоточный коэффициент

. Для двухслойных обмоток при 2р>2 следует принимать =0,91–0,92. Примем .

1.8 Определим синхронную угловую скорость вала двигателя W:

, (1.5) – синхронная частота вращения.

1.9 Рассчитаем длину воздушного зазора

:
, (1.6) – коэффициент формы поля. .

1.10 Критерием правильности выбора главных размеров D и

служит отношение , которое должно находиться в допустимых пределах рисунок 9.25, б. . Значение l лежит в рекомендуемых пределах, значит главные размеры определены верно.

2. Определение числа пазов статора, витков в фазе обмотки и сечения провода обмотки статора

2.1 Определим предельные значения: t 1 max и t 1 min рисунок 9.26. При

и , , .

2.2 Число пазов статора:

, (2.1) (2.2)

Окончательно число пазов должно быть кратным значению числа пазов на полюс и фазу: q. Примем

, тогда
, (2.3)

где m - число фаз.

2.3 Окончательно определяем зубцовое деление статора:

(2.4)

2.4 Предварительный ток обмотки статора

(2.5)

2.5 Число эффективных проводников в пазу (при условии

Архангельский государственный технический университет

Кафедра электротехники и энергетических систем

Факультет ПЭ

КУРСОВОЙ ПРОЕКТ

По дисциплине

"Электрические аппараты и машины"

На тему "Проектирование асинхронного двигателя"

Корельский Вадим Сергеевич

Руководитель проекта

Ст. преподаватель Н.Б. Баланцева

Архангельск 2010


на проект трехфазного асинхронного двигателя c короткозамкнутым ротором

Выдано студенту III курса 1 группы факультета ОСП-ПЭ

Выполнить расчет и конструктивную разработку асинхронного двигателя со следующими данными:

Мощность Р н, кВт ……………………………………………..………… 15

Напряжение U н, В ……………………………………………….… 220/380

Частота вращения n, мин -1 (об/мин) ………………………………… 1465

Кпд двигателя η …………………………………………...………… 88,5%

Коэффициент мощности cos φ ……………………………..………… 0,88

Частота тока f, Гц …………………………………………………..…… 50

Кратность пускового тока I п /I н ………………………………………… 7,0

Кратность пускового момента М п /М н ………………………………… 1,4

Кратность максимального момента М макс /М н ………………………… 2,3

Конструкция ……………………………………………..………… IМ1001

Режим работы ………………………………………………… длительный

Дополнительные требования..…………………… двигатель 4А160S4У3

Задание выдано " … " ……………….. 2009 г.

Руководитель проекта…………………………


1. ВЫБОР ГЛАВНЫХ РАЗМЕРОВ

2. РАСЧЁТ СТАТОРА

2.1 Определение , и площади поперечного сечения провода обмотки статора

2.2 Расчет размеров зубцовой зоны статора и воздушного зазора

3. РАСЧЁТ РОТОРА

4. РАСЧЁТ МАГНИТНОЙ ЦЕПИ

5. ПАРАМЕТРЫ РАБОЧЕГО РЕЖИМА

6. РАСЧЁТ ПОТЕРЬ

7. РАСЧЁТ РАБОЧИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЯ

8. РАСЧЁТ ПУСКОВЫХ ХАРАКТЕРИСТИК ДВИГАТЕЛЯ

8.1 Расчет токов с учетом влияния вытеснения тока и насыщения от полей рассеяния

8.2 Расчёт пусковых характеристик с учётом влияния вытеснения тока и насыщения от полей рассеяния

9. ТЕПЛОВОЙ РАСЧЁТ

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ


Корельский В.С. Проектирование асинхронного электрического двигателя. Руководитель – старший преподаватель Баланцева Н.Б.

Курсовой проект. Пояснительная записка объёмом 49 страница содержит 7 рисунков, 3 таблицы, 2 источника, графическую часть на формате А1.

Ключевые слова: асинхронный электрический двигатель, статор, ротор.

Цель курсового проекта – приобретение практических навыков в проектировании электрических аппаратов.

На основании списка источников и технического задания выбраны главные размеры, рассчитана обмотка статора, ротор, магнитная цепь асинхронного двигателя серии 4А исполнения по степени защиты IP44, с короткозамкнутым ротором с чугунными станиной и подшипниковыми щитами, с высотой оси вращения 160 мм, с меньшим установочным размером по длине станины (S), двух полюсной (

), климатического исполнения У, категории размещения 3. Также вычислены параметры рабочего режима, потери, рабочие и пусковые характеристики без учёта и с учётом насыщения. Проведён тепловой расчёт.

1. ВЫБОР ГЛАВНЫХ РАЗМЕРОВ

1.1 Согласно таблице 9.8 (стр. 344) при высоте оси вращения

мм. принимаем внешний диаметр статора , м м

1.2 Принимая, что размеры пазов не зависят от числа полюсов машины, получим приближенное выражение внутреннего диаметра статора, м.

, (1)

где K D – коэффициент, характеризующий отношение внутреннего и наружного диаметров сердечника статора асинхронной машины серии 4А. При числе полюсов p =4, по таблице 9.9 ; принимаем K D = 0,68

1.3 Полюсное деление

, м (2) м

1.4 Расчетная мощность, ВА.

, (3)

где P 2 – мощность на валу двигателя, P 2 =15∙10 3 Вт;

k E – отношение ЭДС обмотки статора к номинальному напряжению, которое приближенно определяем по рис. 9.20 Принимаем

k E = 0,975;

1.5 Электромагнитные нагрузки предварительно определяем по рис 9.22б, (стр. 346 ), в зависимости от высоты оси вращения h = 160 мм и степени защиты двигателя IP44 откуда

А/м, Тл

1.6 Обмоточный коэффициент (предварительно для однослойной обмотки при 2р =4) принимаем

1.7 Расчетная длина магнитопровода l δ , м

, (4) - коэффициент формы поля (принимаем предварительно) , ; - синхронная угловая частота двигателя, рад/с; (5) рад/с, м

1.8 Значение отношения

. Критерий правильности выбора главных размеров - отношение расчетной длины магнитопровода к полюсному делению (6) находится в допустимых пределах (рис. 9.25 а стр. 348 )

2. РАСЧЁТ СТАТОРА

2.1 Определение

, и площади поперечного сечения провода обмотки статора

1.1 Предельные значения зубцового деления статора

, мм, определяем согласно рисунку 9.26 мм; мм.

2.1.2 Число пазов статора

, определяем по формулам (7) ,

Принимаем Z 1 =48, тогда число пазов на полюс и фазу:

(8)
является целым числом. Обмотка однослойная.

2.1.3 Зубцовое деление статора (окончательно)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра электропривода и электрического транспорта

Допускаю к защите:

Руководитель__ Клепикова Т.В __

ПРОЕКТИРОВАНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ С КОРОТКОЗАМКНУТЫМ РОТОРОМ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовому проекту по дисциплине

«Электрические машины»

096.00.00П3

Выполнил студент группы _ЭАПБ 11-1 ________ __ Нгуен Ван Ву____

Нормоконтроль ___________ _доцент каф.ЭЭТ Клепикова Т.В __

Иркутск 2013

Введение

1. Главные размеры

2 Сердечник статора

3 Сердечник ротора

Обмотка статора

1 Обмотка статора с трапецеидальными полузакрытыми пазами

Обмотка короткозамкнутого ротора

1 Размеры овальных закрытых пазов

2 Размеры короткозамыкающего кольца

Расчет магнитной цепи

1 МДС для воздушного зазора

2 МДС для зубцов при трапецеидальных полузакрытых пазах статора

3 МДС для зубцов ротора при овальных закрытых пазах ротора

4 МДС для спинки статора

5 МДС для спинки ротора

6 Параметры магнитной цепи

Активное и индуктивное сопротивления обмоток

1 Сопротивление обмотки статора

2 Сопротивление обмотки короткозамкнутого ротора с овальными закрытыми пазами

3 Сопротивление обмоток преобразованной схемы замещения двигателя

Режим холостого хода и номинальный

1 Режим холостого хода

2 Расчет параметров номинального режима работы

Круговая диаграмма и рабочие характеристики

1 Круговая диаграмма

2 Рабочие характеристики

Максимальный момент

Начальный пусковой ток и начальный пусковой момент

1 Активные и индуктивные сопротивления, соответствующие пусковому режиму

2 Начальные пусковые ток и момент

Тепловой и вентиляционный расчеты

1 Обмотка статора

2 Вентиляционный расчет двигателя со степенью защиты IP44 и способом охлаждения IC0141

Заключение

Список использованных источников

Введение

Электрические машины являются основными элементами энергетических установок, различных машин, механизмов, технологического оборудования, современных средств транспорта, связи и др. Они вырабатывают электрическую энергию, осуществляют высокоэкономичное преобразование ее в механическую, выполняют разнообразные функции по преобразованию и усилению различных сигналов в системах автоматического регулирования и управления.

Электрические машины широко применяются во всех отраслях народного хозяйства. Их преимущества - высокий КПД, достигающий в мощных электрических машинах 95÷99%, сравнительно малая масса и габаритные размеры, а также экономное использование материалов. Электрические машины могут быть выполнены на различные мощности (от долей ватта до сотен мегаватт), частоты вращения и напряжения. Они характеризуются высокой надежностью и долговечностью, простотой управления и обслуживания, удобством подвода и отвода энергии, небольшой стоимостью при массовом и крупносерийном производстве и являются экологически чистыми.

Асинхронные машины - наиболее распространенные электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.

В настоящее время асинхронные электродвигатели потребляют около половины всей вырабатываемой в мире электроэнергии и широко применяются в качестве электропривода подавляющего большинства механизмов. Это объясняется простотой конструкции, надежностью и высоким значением КПД этих электрических машин.

В нашей стране самой массовой серией электрических машин является общепромышленная серия асинхронных машин 4А. Серия включает машины мощностью от 0,06 до 400 кВт и выполнена на 17 стандартных высотах оси вращения. На каждую из высот вращения выпускаются двигатели двух мощностей, отличающиеся по длине. На базе единой серии выпускаются различные модификации двигателей, которые обеспечивают технические требования большинства потребителей.

На базе единых серий выпускаются различные исполнения двигателей, предназначенных для работы в специальных условиях.

Расчет асинхронного двигателя с короткозамкнутым ротором

Техническое задание

Спроектировать асинхронный трехфазный двигатель с короткозамкнутым ротором: Р=45кВт, U= 380/660 B, n=750 об/мин; конструктивное исполнение IM 1001; исполнение по способу защиты IP44.

1. Магнитная цепь двигателя. Размеры, конфигурация, материал

1 Главные размеры

Принимаем высоту оси вращения двигателя h=250 мм (, таблица 9-1).

Принимаем наружный диаметр сердечника статора DН1=450 мм (, таблица 9-2).

Внутренний диаметр сердечника статора (, таблица 9-3):

1= 0,72 DН1-3=0,72ˑ450-3= 321 (1.1)

Принимаем коэффициент (, рисунок 9-1).

Принимаем предварительное значение КПД (, рисунок 9-2, а)

Принимаем предварительное значение (, рисунок 9-3, а).

Расчетная мощност

(1.2)

Принимаем предварительную линейную нагрузку А/см (, рисунок 9-4, а и таблица 9-5).

Принимаем предварительную индукцию в зазоре (, рисунок 9-4, б и таблица 9-5).

Принимаем предварительное значение обмоточного коэффициента (, страница 119).

Расчетная длина сердечника статора

Принимаем конструктивную длину сердечника статора .

Максимальное значение отношения длины сердечника к его диаметру (, таблица 9-6)

Отношение длины сердечника к его диаметру

(1.5)

1.2 Сердечник статора

Принимаем марку стали - 2013. Принимаем толщину листа 0,5 мм. Принимаем вид изолирования листов - оксидирование.

Принимаем коэффициент заполнения стали kC=0,97.

Принимаем количество пазов на полюс и фазу (, таблица 9-8).

Количество пазов сердечника статора (1.6)

1.3 Сердечник ротора

Принимаем марку стали - 2013. Принимаем толщину листа 0,5 мм. Принимаем вид изолирования листов - оксидирование.

Принимаем коэффициент заполнения стали kC=0,97.

Принимаем сердечник ротора без скоса пазов.

Принимаем воздушный зазор между статором и ротором (, таблица 9-9).

Наружный диаметр сердечника ротора

Внутренний диаметр листов ротора

Принимаем длину сердечника ротора равную длине сердечника статора,

.

Принимаем количество пазов сердечника ротора (, таблица 9-12).

2. Обмотка статора

Принимаем двухслойную обмотку с укороченным шагом, укладываемую в трапецеидальные полузакрытые пазы (, таблица 9-4).

Коэффициент распределения

(2.1)

где

Принимаем относительный шаг обмотки .

Шаг полученной обмотки:

(2.2)

Коэффициент укорочения

Обмоточный коэффициент

Предварительное значение магнитного потока

Предварительное количество витков в обмотке фазы

Предварительное количество эффективных проводников в пазу

(2.7)

где - число параллельных ветвей обмотки статора.

Принимаем

Уточненное количество витков в обмотке фазы

(2.8)

Уточненное значение магнитного потока

Уточненное значение индукции в воздушном зазоре

(2.10)

Предварительное значение номинального фазного тока

Отклонение полученной линейной нагрузки от предварительно принятой

(2.13)

Отклонение не превышает допустимое значение, равное 10%.

Принимаем среднее значение магнитной индукции в спинке статора (, таблица 9-13).

Зубцовое деление по внутреннему диаметру статора

(2.14)

2.1 Обмотка статора с трапецеидальными полузакрытыми пазами

Обмотка статора и паз определяем по рис 9.7

Принимаем среднее значение магнитной индукции в зубцах статора (, таблица 9-14).

Ширина зубца

(2.15)

Высота спинки статора

Высота паза

Большая ширина паза

Предварительное значение ширины шлица

Меньшая ширина паза

где - высота шлица (, страница 131).

И исходя из требования

Площадь поперечного сечения паза в штампе

Площадь поперечного сечения паза в свету

(2.23)

где - припуски на сборку сердечников статора и ротора соответственно по ширине и по высоте (, страница 131).

Площадь поперечного сечения корпусной изоляции

где - среднее значение односторонней толщины корпусной изоляции (, страница 131).

Площадь поперечного сечения прокладок между верхней и нижней катушками в пазу, на дне паза и под клином

Площадь поперечного сечения паза, занимаемая обмоткой

Произведение

где - допускаемый коэффициент заполнения паза для ручной укладки (. страница 132).

Принимаем количество элементарных проводов в эффективном .

Диаметр элементарного изолированного провода

(2.28)

Диаметр элементарного изолированного провода не должен превышать 1,71 мм при ручной укладке и 1,33 мм при машинной. Данное условие выполняется.

Принимаем диаметры элементарного изолированного и неизолированного (d) провода (, приложение 1)

Принимаем площадь поперечного сечения провода (, приложение 1).

Уточненный коэффициент заполнения паза

(2.29)

Значение уточненного коэффициента заполнения паза удовлетворяет условиям ручной укладки и машинной (при машинной укладке допускаемый ).

Уточненная ширина шлица

Принимаем , так как .

(2.31)

Произведение линейной нагрузки на плотность тока

Принимаем допустимое значение произведения линейной нагрузки на плотность тока (, рисунок 9-8). Где коэффициент k5=1 (таблица 9-15).

Среднее зубцовое деление статора

Средняя ширина катушки обмотки статора

Средняя длина одной лобовой части катушки

Средняя длина витка обмотки

Длина вылета лобовой части обмотки

3. Обмотка короткозамкнутого ротора

Принимаем пазы ротора овальной формы, закрытые.

3.1 Размеры овальных закрытых пазов

Пазы ротора определяем по рис. 9.10

Принимаем высоту паза . (, рисунок 9-12).

Расчетная высота спинки ротора

где - диаметр круглых аксиальных вентиляционных каналов в сердечнике ротора, в проектируемом двигателе они не предусматриваются.

Магнитная индукция в спинке ротора

Зубцовое деление по наружному диаметру ротора

(3.3)

Принимаем магнитную индукцию в зубцах ротора (, таблица 9-18).

Ширина зубца

(3.4)

Меньший радиус паза

Больший радиус паза

где - высота шлица (, страница 142);

Ширина шлица (, страница 142);

для закрытого паза (, страница 142).

Расстояние между центрами радиусов

Проверка правильности определения и исходя из условия

(3.8)

Площадь поперечного сечения стержня, равная площади поперечного сечения паза в штампе

3.2 Размеры короткозамыкающего кольца

Принимаем литую клетку.

Короткозамыкающие кольца ротора изображены на рис. 9.13

Поперечное сечение кольца

Высота кольца

Длина кольца

(3.12)

Средний диаметр кольца

4. Расчет магнитной цепи

1 МДС для воздушного зазора

Коэффициент, учитывающий увеличение магнитного сопротивления воздушного зазора вследствие зубчатого строения статора

(4.1)

Коэффициент, учитывающий увеличение магнитного сопротивления воздушного зазора вследствие зубчатости строения ротора

Принимаем коэффициент, учитывающий уменьшение магнитного сопротивления воздушного зазора при наличии радиальных каналов на статоре или роторе .

Общий коэффициент воздушного зазора

МДС для воздушного зазора

4.2 МДС для зубцов при трапецеидальных полузакрытых пазах статора

(, приложение 8)

Принимаем среднюю длину пути магнитного потока

МДС для зубцов

4.3 МДС для зубцов ротора при овальных закрытых пазах ротора

Так как , принимаем напряженность магнитного поля (, приложение 8).

МДС для зубцов

4.4 МДС для спинки статора

(, приложение 11).

Средняя длина пути магнитного потока

МДС для спинки статора

4.5 МДС для спинки ротора

Принимаем напряженность магнитного поля (, приложение 5)

Средняя длина пути магнитного потока

МДС для спинки ротора

4.6 Параметры магнитной цепи

Суммарная МДС магнитной цепи на один полюс

Коэффициент насыщения магнитной цепи

(4.13)

Намагничивающий ток

Намагничивающий ток в относительных единицах

(4.15)

ЭДС холостого хода

Главное индуктивное сопротивление

(4.17)

Главное индуктивное сопротивление в относительных единицах

(4.18)

5. Активное и индуктивное сопротивления обмоток

1 Сопротивление обмотки статора

Активное сопротивление обмотки фазы при 20 0С

где -удельная электрическая проводимость меди при 200С (, страница 158).

Активное сопротивление обмотки фазы при 20 0С в относительных единицах

(5.2)

Проверка правильности определения

Принимаем размеры паза статора (, таблица 9-21)

Высота: (6.4)

Коэффициенты, учитывающие укорочение шага

Коэффициент проводимости рассеяния

(5.7)

Принимаем коэффициент дифференциального рассеяния статора (, таблица 9-23).

Коэффициент, учитывающий влияние открытия пазов статора на проводимость дифференциального рассеяния

Принимаем коэффициент, учитывающий демпфирующую реакцию токов, наведенных в обмотке короткозамкнутого ротора высшими гармониками поля статора (, таблица 9-22).

(5.9)

Полюсное деление:

(5.10)

Коэффициент проводимости рассеяния лобовых частей обмотки

Коэффициент проводимости рассеяния обмотки статора

Индуктивное сопротивление обмотки фазы статора

Индуктивное сопротивление обмотки фазы статора в относительных единицах

(5.14)

Проверка правильности определения

5.2 Сопротивление обмотки короткозамкнутого ротора с овальными закрытыми пазами

Активное сопротивление стержня клетки при 20 0С

где - удельная электрическая проводимость алюминия при 20 °C (, страница 161).

Коэффициент приведения тока кольца к току стержня

(5.17)

Сопротивление короткозамыкающих колец, приведенное к току стержня при 20 0С

магнитный цепь сопротивление обмотка

Центральный угол скоса пазов aск=0 т.к. скоса нет.

Коэффициент скоса пазов ротора

Коэффициент приведения сопротивления обмотки ротора к обмотке статора

Активное сопротивление обмотки ротора при 20 0C, приведенное к обмотке статора

Активное сопротивление обмотки ротора при 20 0C, приведенное к обмотке статора в относительных единицах

Ток стержня ротора для рабочего режима

(5.23)

Коэффициент проводимости рассеяния для овального закрытого паза ротора

(5.24)

Количество пазов ротора на полюс и фазу

(5.25)

Принимаем коэффициент дифференциального рассеяния ротора (, рисунок 9-17).

Коэффициент проводимости дифференциального рассеяния

(5.26)

Коэффициент проводимости рассеяния короткозамыкающих колец литой клетки

Относительный скос пазов ротора, в долях зубцового деления ротора

(5.28)

Коэффициент проводимости рассеяния скоса пазов

Индуктивное сопротивление обмотки ротора

Индуктивное сопротивление обмотки ротора, приведенное к обмотке статора

Индуктивное сопротивление обмотки ротора, приведенное к обмотке статора, в относительных единицах

(5.32)

Проверка правильности определения

(5.33)

Должно выполняться условие . Данное условие выполняется.

5.3 Сопротивление обмоток преобразованной схемы замещения двигателя

Коэффициент рассеяния статора

Коэффициент сопротивления статора

где -коэффициент (, страница 72).

Преобразованные сопротивления обмоток

Пересчет магнитной цепи не требуется, так как и .

6. Режим холостого хода и номинальный

1 Режим холостого хода

Так как , в дальнейших расчетах примем .

Реактивная составляющая тока статора при синхронном вращении

Электрические потери в обмотке статора при синхронном вращении

Расчетная масса стали зубцов статора при трапецеидальных пазах

Магнитные потери в зубцах статора

Масса стали спинки статора

Магнитные потери в спинке статора

Суммарные магнитные потери в сердечнике статора, включающие добавочные потери в стали

(6.7)

Механические потери при степени защиты IP44, способе охлаждения IC0141

(6.8)

где при 2р=8

Активная составляющая тока х.х.

Ток холостого хода

Коэффициент мощности при х.х.

6.2 Расчет параметров номинального режима работы

Активное сопротивление к.з.

Индуктивное сопротивление к.з.

Полное сопротивление к.з.

Добавочные потери при номинальной нагрузке

Механическая мощность двигателя

Эквивалентное сопротивление схемы замещения

(6.17)

Полное сопротивление схемы замещения

Проверка правильности расчетов и

(6.19)

Скольжение

Активная составляющая тока статора при синхронном вращении

Ток ротора

Активная составляющая тока статора

(6.23)

Реактивная составляющая тока статора

(6.24)

Фазный ток статора

Коэффициент мощности

Плотность тока в обмотке статора

(6.28)

где -обмоточный коэффициент для короткозамкнутого ротора (, страница 171).

Ток в стержне короткозамкнутого ротора

Плотность тока в стержне короткозамкнутого ротора

Ток в короткозамыкающем кольце

Электрические потери в обмотке статора

Электрические потери в обмотке ротора

Суммарные потери в электродвигателе

Подводимая мощность:

Коэффициент полезного действия

(6.37)

Подводимая мощность: (6.38)

Подводимые мощности, рассчитанные по формулам (6.36) и (6.38) должны быть равны друг другу, с точностью до округлений. Данное условие выполняется.

Отдаваемая мощность

Отдаваемая мощность должны соответствовать отдаваемой мощности, указанной в техническом задании. Данное условие выполняется.

7. Круговая диаграмма и рабочие характеристики

1 Круговая диаграмма

Масштаб тока

где - диапазон диаметров рабочего круга (, страница 175).

Принимаем .

Диаметр рабочего круга

(7.2)

Масштаб мощности

Длина отрезка реактивного тока

Длина отрезка активного тока

Отрезки на диаграмме

(7.7)

(7.8)

7.2 Рабочие характеристики

Расчет рабочих характеристик ведем в форме таблицы 1.

Таблица 1 - Рабочие характеристики асинхронного двигателя

Услов. обоз.

Отдаваемая мощность в долях



cos0,080,500,710,800,830,85







P, Вт1564,75172520622591,53341,74358,4







, %13,5486,8891,6492,8893,0892,80








8. Максимальный момент

Переменная часть коэффициента статора при трапецеидальном полузакрытом пазе

Составляющая коэффициента проводимости рассеяния статора, зависящая от насыщения

Переменная часть коэффициента ротора при овальных закрытых пазах

(8.3)

Составляющая коэффициента проводимости рассеяния ротора зависящая от насыщения

Ток ротора, соответствующий максимальному моменту (9-322)

(8.7)

Полное сопротивление схемы замещения при максимальном моменте

Полное сопротивление схемы замещения при бесконечно большом скольжении

Эквивалентное сопротивление схемы замещения при максимальном моменте

Кратность максимального момента

Скольжение при максимальном моменте

(8.12)

9. Начальный пусковой ток и начальный пусковой момент

1 Активные и индуктивные сопротивления, соответствующие пусковому режиму

Высота стержня клетки ротора

Приведенная высота стержня ротора

Принимаем коэффициент (, рисунок 9-23).

Расчетная глубина проникновения тока в стержень

Ширина стержня на расчетной глубине проникновения тока в стержень

(9.4)

Площадь поперечного сечения стержня при расчетной глубине проникновения тока

(9.5)

Коэффициент вытеснения тока

Активное сопротивление стержня клетки при 20 0С для пускового режима

Активное сопротивление обмотки ротора при 20 0С, приведенное к обмотке статора, для пускового режима

Принимаем коэффициент (, рисунок 9-23).

Коэффициент проводимости рассеяния паза ротора при пуске для овального закрытого паза


Коэффициент проводимости рассеяния обмотки ротора при пуске

Индуктивное сопротивление рассеяния двигателя, зависящее от насыщения

Индуктивное сопротивление рассеяния двигателя, не зависящее от насыщения

(9.12)

Активное сопротивление к.з. при пуске

9.2 Начальные пусковые ток и момент

Ток ротора при пуске двигателя


Полное сопротивление схемы замещения при пуске (с учетом явлений вытеснения тока и насыщения путей потоков рассеяния)

Индуктивное сопротивление схемы замещения при пуске

Активная составляющая тока статора при пуске

(9.17)

Реактивная составляющая тока статора при пуске

(9.18)

Фазный ток статора при пуске

Кратность начального пускового тока

(9.20)

Активное сопротивление ротора при пуске, приведенное к статору, при расчетной рабочей температуре и Г-образной схеме замещения

(9.21)

Кратность начального пускового момента

10. Тепловой и вентиляционный расчеты

1 Обмотка статора

Потери в обмотке статора при максимально допускаемой температуре

где - коэффициент (, страница 76).

Условная внутренняя поверхность охлаждения активной части статора

Расход воздуха, который может быть обеспечен наружным вентилятором, должен превышать необходимый расход воздуха. Данное условие выполняется.

Напор воздуха, развиваемый наружным вентилятором

Заключение

В данном курсовом проекте был спроектирован асинхронный электродвигатель основного исполнения, с высотой оси вращения h=250 мм, степенью защиты IP44, с короткозамкнутым ротором. В результате расчета были получены основные показатели для двигателя заданной мощности P и cos, которые удовлетворяют предельно допустимым значением ГОСТа.

Спроектированный асинхронный электродвигатель удовлетворяет требованиям ГОСТ как по энергетическим показателям (КПД и cosφ), так и по пусковым характеристикам.

Тип двигателя Мощность, кВт Высота оси вращения, мм Масса, кг Частота вращения, об/мин КПД, % Коэффициент мощности, Момент инерции,

2. Кравчик А.Э. и др. Асинхронный двигатель серии 4А, справочник. - М.: Энергоатомиздат, 1982. - 504с.

3. Проектирование электрических машин: учеб. для электромех. И электроэнергет. специальностей вузов / И. П. Копылов [и др.]; под ред. И. П. Копылова. - Изд. 4-е, перераб. и доп. - М. : Высш. шк., 2011. - 306 с.

Приложение. Составление спецификации

Обозначение

наименование

Примечание












Документация













1.096.00.000.ПЗ

Пояснительная записка





1.096.00.000.СЧ

Сборочный чертеж























Обмотка статора




Обмотка ротора




Сердечник статора




Сердечник ротора




Коробка выводов







Рым. Болт







Болт заземления







Вентилятор




Кожух Вентилятор




Подшипник



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «derevyannyydom.ru» — Строим новый дом