Ряд активности металлов и следствия из него. Активные металлы. III. Рефлексия, размышление

Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Pb, H 2 , Cu, Ag, Hg, Au

Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Взаимодействие с простыми веществами

    С кислородом большинство металлов образует оксиды – амфотерные и основные:

4Li + O 2 = 2Li 2 O,

4Al + 3O 2 = 2Al 2 O 3 .

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2 .

    С галогенами металлы образуют соли галогеноводородных кислот, например,

Cu + Cl 2 = CuCl 2 .

    С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

2Na + H 2 = 2NaH.

    С серой металлы образуют сульфиды – соли сероводородной кислоты:

    С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

3Mg + N 2 = Mg 3 N 2 .

    С углеродом образуются карбиды:

4Al + 3C = Al 3 C 4 .

    С фосфором – фосфиды:

3Ca + 2P = Ca 3 P 2 .

    Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

2Na + Sb = Na 2 Sb,

3Cu + Au = Cu 3 Au.

    Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы .

Сплавы

Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

Возможны следующие типы сплавов:

Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

Расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

Разность потенциалов «вещество электрода – раствор» как раз и служит количествен­ной характеристикой способности вещества (как металлов, так и неметаллов) переходить в раствор в виде ионов, т.е. характери­ стикой ОВ способности иона и соответствующего ему вещества.

Такую разность потенциалов называют электродным потенциалом .

Однако прямых методов измерений такой разности потенциалов не существует, поэтому условились их определять по отношению к так называемому стандартному водородному электроду, потенци­ ал которого условно принят за ноль (часто его также называют электродом сравнения). Стандартный водородный электрод состоит из платиновой пластинки, погруженной в раствор кислоты с кон­ центрацией ионов Н + 1 моль/л и омываемой струей газообразного водорода при стандартных условиях .

Возникновение потенциала на стандартном водородном электроде можно представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

H 2 2H .

Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

H Н + + е.

Суммарный процесс выражается уравнением:

Н 2 2Н + + 2е.

Платина не принимает участия в окислительно – восстанов ительном процессе, а является лишь носителем атомарного водорода.

Если пластинку некоторого металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25° С, и характеризует стандартный элек­тродный потенциал металла, обозначаемый обычно как Е 0 .

По отношению к системе Н 2 /2Н + некоторые вещества будут вести себя как окислители, другие - как восстановители. В настоящее время получены стандартные потенциалы практически всех металлов и многих неметаллов, которые характеризуют относительную способность восстановителей или окислителей к от­даче или захвату электронов.

Потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-“, а знаком “+” отмечены потенциалы электродов, являющихся окислителями.

Если расположить металлы в порядке воз­растания их стандартных электродных потенциалов, то образует­ся так называемый электрохимический ряд напряжений метал­лов :

Li , Rb , К, Ва, Sr , Са, N а, М g , А l , М n , Zn , С r , F е, С d , Со, N i , Sn , Р b , Н, Sb , В i , С u , Hg , А g , Р d , Р t , А u .

Ряд напряжений характеризует химические свойства металлов.

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений металлов после него. Исключениями являются лишь щелочные и щелочноземельные металлы, которые не будут восстанавливать ионы других металлов из растворов их солей. Это связано с тем, что в этих случаях с большей скоростью протекают реакции вза­имодействия металлов с водой.

3. Все металлы, имеющие отрицательный стандартный элек­тродный потенциал, т.е. находящиеся в ряду напряжений метал­лов левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах, поскольку потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Именно поэтому электрохимический ряд начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией про­цесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Так, все полуреакции окисления галогенид-ионов до свободных галогенов

2 Cl – – 2 e = С l 2 Е 0 = -1,36 В (1)

2 Br – -2е = В r 2 E 0 = -1,07 В (2)

2I – -2 е = I 2 E 0 = -0,54 В (3)

могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца (IV ) (Е 0 = 1,46 В) или перманганата калия (Е 0 = 1,52 В). При использовании дихромата калия (E 0 = 1,35 В) удается осуществить только реакции (2) и (3). Наконец, использование в качестве окислителя азотной кислоты (E 0 = 0,96 В) позволяет осуществить только полуреакцию с участием иодид-ионов (3).

Таким образом, количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Вспомните:

Простые вещества состоят из атомов одного химического элемента, их разделяют на металлы и неметаллы;

Для металлов характерны металлический блеск, электропроводность, пластичность и т. п.

Понятие о ряде активности металлов

Во многих химических реакциях принимают участие простые вещества, в частности металлы. Металлы могут взаимодействовать почти со всеми классами неорганических соединений, которые изучаются в школьном курсе химии. Однако разные металлы проявляют разную активность в химических взаимодействиях, и от этого зависит, произойдет реакция или нет.

Чем больше активность металла, тем энергичнее он взаимодействует с другими веществами. По активности все металлы можно расположить в ряд, который называется рядом активности металлов (вытеснительным рядом металлов, рядом напряжений металлов, электрохимическим рядом напряжений металлов). Этот ряд впервые составил и изучил выдающийся украинский ученый Н. Н. Бекетов, поэтому у данного ряда есть еще одно название — ряд Бекетова.

Ряд активности металлов Бекетова выглядит так (более полный ряд см. на форзаце 2):

Русский и украинский химик, основатель украинской школы физической химии, академик Петербургской академии наук с 1886 г. Родился в семье морского офицера. Закончил Казанский университет, работал в Петербурге в Медико-химической лаборатории.

Преподавал химию цесаревичу — будущему императору Николаю II. С 1855 г. профессор императорского университета в Харькове, где по предложению ученого в 1864 г. было открыто первое в Украине физикохимическое отделение. Именно там впервые в мире он начал преподавать физическую химию как отдельную дисциплину. Бекетов открыл способ восстановления металлов из их оксидов, который и сегодня используют в металлургии, установил зависимость сродства элементов от порядкового номера, первым получил чистые оксиды щелочных элементов (Натрия, Калия), составил ряд активности металлов, который назван его именем, был автором первого в мире учебника по физической химии.

В этом ряду металлы расположены по уменьшению их химической активности в водных растворах. Таким образом, среди приведенных металлов наиболее активным является калий, а наименее активным — золото. С помощью этого ряда легко выяснить, какой металл активнее другого. Также в этом ряду находится водород. Конечно, водород не является металлом, но в данном ряду его активность принята за точку отсчета (своего рода ноль).

Взаимодействие металлов с кислотами

Металлы, расположенные в ряду активности слева от водорода, способны вступать в реакции с кислотами, в которых атомы металлических элементов замещают атомы Гидрогена в кислотах. При этом образуются соль соответствующей кислоты и водород H 2 (рис. 36.1, с. 194):

Чем левее расположен металл в ряду активности, тем более бурно он взаимодействует с кислотами. Наиболее интенсивно вытесняют водород из кислот те металлы, которые расположены в самом начале ряда. Так, магний взаимодействует очень бурно (жидкость словно

закипает), цинк взаимодействует значительно спокойнее, железо реагирует совсем слабо (пузырьки водорода едва образуются), а медь вовсе не взаимодействует с кислотой (рис. 36.2).

Если металл расположен в ряду активности справа от водорода, то он не способен вытеснять водород из растворов кислот, и потому реакция не происходит (табл. 12, с. 197):

Обратите внимание на уравнения реакций металлов с кислотами, приведенные выше: в этих реакциях атомы металлических элементов из простого вещества замещают атомы Гидрогена в кислотах. Такие реакции называют реакциями замещения.

Реакции замещения — это реакции, в которых атом элемента простого вещества вытесняет атом другого элемента из сложного вещества.

Взаимодействие нитратной и концентрированной сульфатной кислот с металлами происходит по другой схеме. В таких реакциях водород почти не выделяется, а выделяются другие продукты реакции, о чем вы узнаете в следующих классах.

Взаимодействие металлов с водой

Металлы, расположенные в ряду активности слева от водорода, способны вытеснять водород не только из растворов кислот, но и из воды. Как и в случае с кислотами, активность взаимодействия металлов с водой зависит от расположения металла в ряду активности (рис. 36.3).

Металлы, расположенные в ряду активности слева от магния, взаимодействуют с водой при обычных условиях. В таких реакциях образуются щелочи и водород:


Литий взаимодействует с водой очень бурно (рис. 36.4):

Калий реагирует с водой так бурно, что иногда случается взрыв: во время реакции выделяется настолько большое количество теплоты, что выделяемый водород загорается и вызывает воспламенение самого металла.

Кальций и натрий взаимодействуют с водой так же бурно, но без взрыва:

То, что в результате реакции активных металлов с водой образуются щелочи, можно доказать, добавив раствор фенолфталеина, который приобретает характерную малиновую окраску (рис. 36.5, с. 196).



Магний взаимодействует с водой по такой же схеме, что и активные металлы, но вместо щелочи образуется нерастворимое основание. Реакция протекает настолько медленно, что сначала при добавлении магния к воде никакой реакции не наблюдается — пузырьки водорода начинают выделяться лишь спустя некоторое время (рис. 36.6). Для инициирования реакции воду следует немного подогреть или проводить реакцию в кипящей воде.

Большинство других металлов, расположенных между магнием и водородом в ряду активности, также могут взаимодействовать с водой (вытеснять из нее водород), но это происходит при более «жестких» условиях: для этого через раскаленные металлические опилки пропускают перегретый водяной пар. Конечно, при таких условиях гидроксиды разлагаются (на оксид и воду), поэтому продуктами реакции являются оксид соответствующего металлического элемента и водород:

Никель, олово и свинец пассивируются водой, поэтому ни при каких условиях с водой не реагируют.

Таблица 12. Зависимость химических свойств металлов от положения в ряду активности

K Ca Na Mg

Al Zn Fe

Ni Sn Pb

Cu Ag Hg Au

^ Активность металлов увеличивается

Реагируют с кислотами с образованием соли и водорода

Не реагируют с кислотами

Реагируют с водой при обычных условиях

Вытесняют водород из воды при высокой температуре, образуют оксиды

С водой не взаимодействуют

Из водного раствора соли металл вытеснить невозможно

Металл можно получить вытеснением его более активным металлом из раствора соли

Взаимодействие металлов с солями

Если соль растворима в воде, то металлический элемент в ней может быть вытеснен более активным металлом:

Например, если погрузить в раствор купрум(П) сульфата железную пластинку, через определенное время на ней выделится медь в виде красного налета:

Со временем железная пластинка покрывается довольно плотным слоем порошка меди, а раствор светлеет, что свидетельствует об уменьшении в нем концентрации купрум(П) сульфата (рис. 36.7).

Железо расположено в ряду активности слева от меди, поэтому атомы Феррума могут вытеснить атомы Купрума из соли. Но если в раствор купрум(П) сульфата погрузить серебряную пластину, то реакция не происходит:

CuSO 4 + Ag ф

Медь можно вытеснить из соли любым металлом, расположенным слева от меди в ряду активности металлов. При этом

Рис. 36.8. Менее активное, чем медь, серебро оседает на поверхности медной проволоки. Раствор приобретает голубую окраску благодаря образованию на нем соли Купрума

медь будет вытеснять из растворов других солей любой металл, который расположен в ряду активности справа от нее (рис. 36.8):

Наиболее активные металлы, расположенные в самом начале ряда,— натрий, калий — не вытесняют другие металлы из растворов солей, поскольку они такие активные, что взаимодействуют не с растворенной солью, а с водой, в которой эта соль растворена.

Взаимодействие металлов с оксидами

Оксиды металлических элементов также способны взаимодействовать с металлами. Более активные металлы вытесняют менее активные из оксидов. Но, в отличие от взаимодействия металлов с солями, чтобы реакция осуществилась, оксиды необходимо расплавить:

Для получения металла из оксида можно применять любой металл, который расположен в ряду активности левее, даже самые активные натрий и калий, ведь в расплавленном оксиде воды нет:

Вытеснение металлов из солей или оксидов более активными металлами иногда применяют в промышленности для получения металлов.

Многие кислоты и другие вещества алхимики называли «спиртами» (от латин. spiritus — «дух», «запах»). Так, был spiritus sale — соляный спирт, или хлоридная кислота, spiritus nitrate — нитратная кислота и т. д. В современном химическом языке от этих названий остались только spiritus ammonia — нашатырный спирт, который является раствором аммиака NH 3 , и spiritus vini — винный, или этиловый, спирт.

Горящие активные металлы (магний, натрий и др.) невозможно погасить водой. Причина заключается в том, что при контакте с водой горящий магний реагирует с ней, вследствие чего выделяется водород, который только усиливает горение.

. «Царской водкой» химики называют кислоту, которая является смесью концентрированных нитратной и хлоридной кислот. Такое название эта смесь получила потому, что с ней взаимодействует даже золото.

Взаимодействие хлоридной кислоты с металлами

Оборудование: штатив с пробирками.

Реактивы: гранулированные образцы металлов: железо, цинк, олово, алюминий, медь; хлоридная кислота.

Правила безопасности:

Остерегайтесь попадания реактивов на одежду, кожу, в глаза; в случае попадания кислоты ее следует немедленно смыть большим количеством воды и протереть место разбавленным раствором соды.

1. В отдельные пробирки поместите выданные вам кусочки металлов (железо, цинк, олово, алюминий, медь).

2. Прилейте в каждую пробирку по 1-2 мл хлоридной кислоты. Что вы наблюдаете? С каким металлом выделение водорода проходит наиболее интенсивно?

3. Запишите свои наблюдения в тетрадь.

4. Сделайте вывод о возможности взаимодействия металлов с кислотами. Сопоставьте активность этого взаимодействия с положением металла в ряду активности.

Взаимодействие металлов с солями в водном растворе

Оборудование: штатив с пробирками.

Реактивы: растворы купрум(П) сульфата, плюмбум(П) нитрата; железная и цинковая пластинки.

Правила безопасности:

Используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на одежду, кожу, в глаза; в случае попадания вещества его следует немедленно смыть водой.

1. В первую пробирку налейте раствор купрум(П) сульфата, во вторую — раствор плюмбум(П) нитрата.

2. В первую пробирку с купрум(П) сульфатом погрузите железную пластину, а во вторую — цинковую. Что наблюдаете? Изменятся ли признаки реакции, если в раствор купрум(П) сульфата опустить цинковую пластину, а в раствор плюмбум(П) нитрата — железную пластину? А если бы в обоих случаях использовали серебряную пластину?

3. Запишите свои наблюдения. Составьте соответствующие уравнения реакций.

4. Сделайте вывод, в котором обоснуйте возможность взаимодействия солей с металлами с точки зрения положения металлов в ряду активности.

Выводы

1. Все металлы, расположенные в один ряд по уменьшению их активности, образуют ряд активности металлов. В него также добавлен водород как вещество, относительно которого определяют активность металлов.

2. Металлы, расположенные в ряду активности слева от водорода, вытесняют его из кислот и воды. Чем левее расположен металл, тем активнее он вступает в реакции. Металлы слева от магния взаимодействуют с водой при обычных условиях, образуя соответствующие гидроксиды и водород, а металлы, расположенные от магния до водорода, взаимодействуют с водой при высокой температуре с образованием оксидов.

3. Металлы могут вытеснять друг друга из соли или оксида: более активный металл всегда вытесняет менее активный. Для проведения таких реакций с водными растворами солей нельзя использовать металлы, расположенные в ряду активности до магния, поскольку они будут взаимодействовать с водой, а не с растворенной в ней солью.

Контрольные вопросы

1. Какую информацию содержит ряд активности металлов Бекетова? По какому принципу в нем расположены металлы?

2. Какие металлы вытесняют водород из кислот? Приведите примеры.

3. Какие металлы взаимодействуют с водой? Какие из них взаимодействуют при обычных условиях, а какие — при высокой температуре?

4. По какому принципу необходимо отбирать металлы для вытеснения других металлов из растворов солей? из расплавов оксидов?

Задания для усвоения материала

1. При каких условиях кислоты реагируют: а) с металлами; б) основаниями; в) солями? Ответ подтвердите уравнениями реакций.

2. При каких условиях соли реагируют: а) с кислотами; б) металлами; в) основаниями? Ответ подтвердите уравнениями реакций.

3. Кусочки магния и олова поместили в раствор хлоридной кислоты. В каком случае реакция протекает интенсивнее? Составьте уравнения этих реакций.

4. Образцы натрия, кальция и цинка залили водой. Что наблюдается в каждом случае? Составьте соответствующие уравнения реакций.

5. В раствор никель(И) сульфата погрузили свинцовую и железную пластины. В каком случае реакция происходит? Ответ обоснуйте.

6. Почему для получения меди из раствора купрум(П) сульфата нельзя использовать натрий и калий, ведь они активнее меди? Можно ли их использовать для добывания меди из расплава купрум(И) оксида?

7. Калий взаимодействует с водой настолько бурно, что выделяемый водород загорается. Какое вещество образуется в растворе? Составьте уравнение реакции.

8. Предложите, как с помощью химических реакций разделить смесь меди и железа.

9. Какие вещества образуются при взаимодействии воды: а) с активными металлами; б) оксидами активных металлических элементов; в) оксидами неметаллических элементов? Приведите примеры.

10. Составьте уравнения возможных реакций:

11. С какими из данных веществ взаимодействует сульфатная кислота: NaNO 3 , CO 2 , NaOH, AgNO 3 , Zn, Ba, CaCO 3 , Cu(OH) 2 , Zn(OH) 2 , HCl, SiQ 2 , Fe 2 O 3 , Hg? Составьте уравнения реакций.

12. Какие из указанных веществ взаимодействуют с водой: Na, Ba, Fe, Fe 2 O 3 , H 2 SO 4 , NaOH, CaO, ZnО? Ответ подтвердите уравнениями реакций.

13. При погружении цинковой пластины в раствор купрум(іі) нитрата на пластине выделилась медь массой 3,2 г. Определите массу цинка, который растворился в результате реакции.

14. Вычислите массу олова, которое можно получить в результате взаимодействия станнум(іі) оксида с алюминием массой 0,54 кг.

15. Какой объем водорода (н. у.) выделится, если цинк массой 97,5 г полностью прореагирует с хлоридной кислотой?

16. Какое количество вещества сульфатной кислоты необходимо для взаимодействия с магнием массой 12 г? Какая масса соли при этом образуется? Какой объем газа (н. у.) выделится?

17. Какое количество вещества меди можно выделить из раствора купрум(іі) сульфата, содержащего 32 г этой соли?

18. Смесь магния массой 6 г и железа массой 16,8 г обработали достаточным количеством раствора сульфатной кислоты. Какой объем водорода (н. у.) выделился в результате реакции?

19. В раствор аргентум(І) нитрата массой 85 г с массовой долей соли 2 % погрузили цинковую пластинку. Вычислите массу серебра, которое выделится на пластинке после окончания реакции. Определите, как изменится масса пластинки по сравнению с ее исходной массой.

20 5 . Алюминий — достаточно активный металл, но изделия из алюминия хранятся на воздухе без видимых признаков порчи. Если зачищенное изделие из алюминия, например ложку или вилку, на некоторое время поместить в раствор меркурий(іі) нитрата, оно покроется серебристым налетом. Обработанное таким образом изделие при хранении на воздухе за довольно короткое время превращается в серый порошок, среди которого можно наблюдать серебристые шарики. Объясните с химической точки зрения, почему могут происходить такие изменения. Составьте соответствующие уравнения реакций.

Это материал учебника

Все металлы, в зависимости от их окислительно-восстановительной активности объединяют в ряд, который называется электрохимическим рядом напряжения металлов (так как металлы в нем расположены в порядке увеличения стандартных электрохимических потенциалов) или рядом активности металлов:

Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H 2 , Cu, Hg, Ag, Рt, Au

Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.

Алюминий

Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al 2 O 3 , которая делает его устойчивым к действию концентрированных кислот.

Алюминий относится к металлам p-семейства. Электронная конфигурация внешнего энергетического уровня – 3s 2 3p 1 . В своих соединениях алюминий проявляет степень окисления равную «+3».

Алюминий получают электролизом расплава оксида этого элемента:

2Al 2 O 3 = 4Al + 3O 2

Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na 3 и Al 2 O 3 . Реакция протекает при нагревании до 960С и в присутствии катализаторов – фторидов (AlF 3 , CaF 2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.

Алюминий способен взаимодействовать с водой после удаления с его поверхности оксидной пленки (1), взаимодействовать с простыми веществами (кислородом, галогенами, азотом, серой, углеродом) (2-6), кислотами (7) и основаниями (8):

2Al + 6H 2 O = 2Al(OH) 3 +3H 2 (1)

2Al +3/2O 2 = Al 2 O 3 (2)

2Al + 3Cl 2 = 2AlCl 3 (3)

2Al + N 2 = 2AlN (4)

2Al +3S = Al 2 S 3 (5)

4Al + 3C = Al 4 C 3 (6)

2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 (7)

2Al +2NaOH +3H 2 O = 2Na + 3H 2 (8)

Кальций

В свободном виде Ca – серебристо-белый металл. При нахождении на воздухе мгновенно покрывается желтоватой пленкой, которая представляет собой продукты его взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, имеет кубическую гранецентрированную кристаллическую решетку.

Электронная конфигурация внешнего энергетического уровня – 4s 2 . В своих соединениях кальций проявляет степень окисления равную «+2».

Кальций получают электролизом расплавов солей, чаще всего – хлоридов:

CaCl 2 = Ca + Cl 2

Кальций способен растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства (1), реагировать с кислородом (2), образуя оксиды, взаимодействовать с неметаллами (3 -8), растворяться в кислотах (9):

Ca + H 2 O = Ca(OH) 2 + H 2 (1)

2Ca + O 2 = 2CaO (2)

Ca + Br 2 =CaBr 2 (3)

3Ca + N 2 = Ca 3 N 2 (4)

2Ca + 2C = Ca 2 C 2 (5)

2Ca + 2P = Ca 3 P 2 (7)

Ca + H 2 = CaH 2 (8)

Ca + 2HCl = CaCl 2 + H 2 (9)

Железо и его соединения

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3».

Металлическое железо реагирует с водяным паром, образуя смешанный оксид (II, III) Fe 3 O 4:

3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2

На воздухе железо легко окисляется, особенно в присутствии влаги (ржавеет):

3Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3

Как и другие металлы железо вступает в реакции с простыми веществами, например, галогенами (1), растворяется в кислотах (2):

Fe + 2HCl = FeCl 2 + H 2 (2)

Железо образует целый спектр соединений, поскольку проявляет несколько степеней окисления: гидроксид железа (II), гидроксид железа (III), соли, оксиды и т.д. Так, гидроксид железа (II) можно получить при действии растворов щелочей на соли железа (II) без доступа воздуха:

FeSO 4 + 2NaOH = Fe(OH) 2 ↓ + Na 2 SO 4

Гидроксид железа (II) растворим в кислотах и окисляется до гидроксида железа (III) в присутствии кислорода.

Соли железа (II) проявляют свойства восстановителей и превращаются в соединения железа (III).

Оксид железа (III) нельзя получить по реакции горения железа в кислороде, для его получения необходимо сжигать сульфиды железа или прокаливать другие соли железа:

4FeS 2 + 11O 2 = 2Fe 2 O 3 +8SO 2

2FeSO 4 = Fe 2 O 3 + SO 2 + 3H 2 O

Соединения железа (III) проявляют слабые окислительные свойства и способны вступать в ОВР с сильными восстановителями:

2FeCl 3 + H 2 S = Fe(OH) 3 ↓ + 3NaCl

Производство чугуна и стали

Стали и чугуны – сплавы железа с углеродом, причем содержание углерода в стали до 2%, а в чугуне 2-4%. Стали и чугуны содержат легирующие добавки: стали– Cr, V, Ni, а чугун – Si.

Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.

Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.

В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.

Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.

Примеры решения задач

ПРИМЕР 1

Задание Сплав магния и алюминия массой 26,31 г растворили в соляной кислоте. При этом выделилось 31,024 л бесцветного газа. Определите массовые доли металлов в сплаве.
Решение Вступать в реакцию с соляной кислотой способны оба металла, в результате чего выделяется водород:

Mg +2HCl = MgCl 2 + H 2

2Al +6HCl = 2AlCl 3 + 3H 2

Найдем суммарное число моль выделившегося водорода:

v(H 2) =V(H 2)/V m

v(H 2) = 31,024/22,4 = 1,385 моль

Пусть количество вещества Mg – х моль, а Al –y моль. Тогда, исходя из уравнений реакций можно записать выражение для суммарного числа моль водорода:

х + 1,5у = 1,385

Выразим массу металлов, находящихся в смеси:

Тогда, масса смеси будет выражаться уравнением:

24х + 27у = 26,31

Получили систему уравнений:

х + 1,5у = 1,385

24х + 27у = 26,31

Решим её:

33,24 -36у+27у = 26,31

v(Al) = 0,77 моль

v(Mg) = 0,23моль

Тогда, масса металлов в смеси:

m(Mg) = 24×0,23 = 5,52 г

m(Al) = 27×0,77 = 20.79 г

Найдем массовые доли металлов в смеси:

ώ =m(Me)/m sum ×100%

ώ(Mg) = 5,52/26,31 ×100%= 20,98%

ώ(Al) = 100 – 20,98 = 79,02%

Ответ Массовые доли металлов в сплаве: 20,98%, 79,02%

В учебниках химии при изложении темы «Кислоты» в том или ином виде упоминается так называемый вытеснительный ряд металлов, составление которого часто приписывается Беке́тову.

Например, в самом распространенном некогда учебнике для 8‑го класса Г. Е. Рудзитиса и Ф. Г. Фельдмана (с 1989 по 1995 г. он был издан общим тиражом 8,3 млн экземпляров), говорится следующее. На опыте легко убедиться, что магний быстро реагирует с кислотами (на примере соляной кислоты), несколько медленнее – цинк, еще медленнее – железо, а медь с соляной кислотой не реагирует. «Аналогичные опыты были проделаны русским ученым Н. Н. Бекетовым, – пишут далее авторы учебника. – На основе опытов он составил вытеснительный ряд металлов: K, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb (H), Cu, Hg, Ag, Pt, Au. В этом ряду все металлы, стоящие до водорода, способны вытеснять его из кислот». Сообщается также, что Бекетов – «основоположник физической химии. В 1863 г. составил вытеснительный ряд металлов, который называется по имени ученого». Далее учащимся сообщают, что в ряду Бекетова металлы, стоящие левее, вытесняют металлы, стоящие правее, из растворов их солей. Исключение составляют самые активные металлы. Аналогичные сведения можно найти и в других школьных учебниках и пособиях, например: «Русский химик Н. Н. Бекетов исследовал все металлы и расположил их по химической активности в вытеснительный ряд (ряд активности)» и т. п.

Здесь может возникнуть несколько вопросов.

Вопрос первый. Неужели до опытов Бекетова (т. е. до 1863 г.) химики не знали, что магний, цинк, железо и ряд других металлов реагируют с кислотами с выделением водорода, а медь, ртуть, серебро, платина и золото этим свойством не обладают?

Вопрос второй. Неужели химики до Бекетова не замечали, что одни металлы могут вытеснять другие из растворов их солей?

Вопрос третий. В книге В. А. Волкова, Е. В. Вонского, Г. И. Кузнецова «Выдающиеся химики мира. Биографический справочник» (М.: Высшая школа, 1991) сказано, что Николай Николаевич Бекетов (1827–1911) – «русский физикохимик, академик… один из основоположников физической химии… Исследовал поведение органических кислот при высоких температурах. Синтезировал (1852 г.) бензуреид и ацетуреид. Выдвинул (1865 г.) ряд теоретических положений о зависимости направления реакций от состояния реагентов и внешних условий… Определил теплоты образования оксидов и хлоридов щелочных металлов, впервые получил (1870 г.) безводные оксиды щелочных металлов. Используя способность алюминия восстанавливать металлы из их оксидов, заложил основы алюминотермии… Президент Русского физико‑химического общества....». И ни слова о составлении им вытеснительного ряда, вошедшего (в отличие, например, от уреидов – производных мочевины) в школьные учебники, изданные многомиллионными тиражами!



Вряд ли следует порицать авторов биографического справочника в забвении важного открытия русского ученого: ведь и Д. И. Менделеев, которого уж никак нельзя упрекнуть в непатриотизме, в своем классическом учебнике «Основы химии» тоже ни разу не упоминает вытеснительного ряда Бекетова, хотя 15 раз ссылается на различные его работы. Чтобы ответить на все эти вопросы, нам придется совершить экскурс в историю химии, разобраться в том, кто и когда предложил ряд активности металлов, какие эксперименты провел сам Н. Н. Бекетов и что же представляет собой его вытеснительный ряд.

На первые два вопроса ответить можно так. Конечно, и выделение водорода из кислот металлами, и различные примеры вытеснения ими друг друга из солей были известны задолго до рождения Бекетова. Например, в одном из руководств шведского химика и минералога Торнберна Улафа Бергмана, изданном в 1783 г., рекомендуется при анализе полиметаллических руд вытеснять из растворов свинец и серебро с помощью железных пластинок. При проведении же расчетов на содержание железа в руде следует учитывать ту его часть, которая перешла в раствор из пластинок. В том же руководстве Бергман пишет: «Металлы можно вытеснить из растворов их солей другими металлами, при этом наблюдается некоторая последовательность. В ряду цинк, железо, свинец, олово, медь, серебро и ртуть цинк вытесняет железо и т. д.». И, конечно, не Бергман впервые обнаружил эти реакции: подобные наблюдения восходят еще к алхимическим временам. Самый известный пример такой реакции использовали в Средние века шарлатаны, публично демонстрировавшие «превращение» железного гвоздя в красное «золото», когда опускали гвоздь в раствор медного купороса. Сейчас эту реакцию демонстрируют на уроках химии в школе. В чем же заключается сущность новой теории Бекетова? До появления химической термодинамики протекание реакции в том или ином направлении химики объясняли понятием сродства одних тел к другим. Тот же Бергман, основываясь на известных реакциях вытеснения, развивал с 1775 г. теорию избирательного сродства. Согласно этой теории, химическое сродство между двумя веществами при данных условиях остается постоянным и не зависит от относительных масс реагирующих веществ. То есть если тела А и В соприкасаются с телом С, то соединяться с С будет то тело, которое обладает к нему бо′льшим сродством. Например, железо имеет большее сродство к кислороду, чем ртуть, и поэтому именно оно будет в первую очередь окисляться им. Предполагалось, что направление реакции определяется исключительно химическим сродством реагирующих тел, причем реакция идет до конца. Бергман составил таблицы химического сродства, которыми химики пользовались до начала XIX в. В эти таблицы вошли, в частности, различные кислоты и основания.

Почти одновременно с Бергманом французский химик Клод Луи Бертолле развивал другую теорию. Химическое сродство также связывалось с притяжением тел друг к другу, однако выводы делались другие. По аналогии с законом всемирного притяжения Бертолле считал, что и в химии притяжение должно зависеть от массы реагирующих тел. Поэтому ход реакции и ее результат зависят не только от химического сродства реагентов, но и от их количеств. Например, если тела А и В могут реагировать с С, то тело С распределится между А и В сообразно их сродствам и массам и ни одна реакция не дойдет до конца, так как наступит равновесие, когда одновременно сосуществуют АС, ВС и свободные А и В. Очень важно, что распределение С между А и В может изменяться в зависимости от избытка А или В. Поэтому при большом избытке тело с малым сродством может почти полностью «отобрать» тело С от своего «соперника». Но если один из продуктов реакции (АС или ВС) удаляется, то реакция пройдет до конца и образуется только тот продукт, который уходит из сферы действия.

Свои выводы Бертолле сделал, наблюдая за процессами выпадения осадков из растворов. Эти выводы звучат на удивление современно, если не считать устаревшей терминологии. Однако теория Бертолле была качественной, она не давала способов измерить величины сродства.

Дальнейшие успехи теории были основаны на открытиях в области электричества. Итальянский физик Алессандро Вольта в конце XVIII в. показал, что при соприкосновении различных металлов возникает электрический заряд. Проводя опыты с различными па́рами металлов и определяя знак и величину заряда одних металлов по отношению к другим, Вольта установил ряд напряжений: Zn, Pb, Sn, Fe, Cu, Ag, Au. Используя пары разных металлов, Вольта сконструировал гальванический элемент, сила которого была тем больше, чем дальше отстояли друг от друга члены этого ряда. Причина этого в те годы была неизвестна. Правда, еще в 1797 г. немецкий ученый Иоганн Вильгельм Риттер предсказал, что в ряду напряжений металлы должны стоять в порядке уменьшения их способности соединяться с кислородом. В случае цинка и золота этот вывод не вызывал сомнений; что же касается других металлов, то надо отметить, что их чистота была не очень высока, поэтому ряд Вольты не всегда соответствует современному.

Теоретические воззрения на природу происходящих при этом процессов были весьма смутными и часто противоречивыми. Знаменитый шведский химик Йёнс Якоб Берцелиус в начале XIX в. создал электрохимическую (или же дуалистическую, от лат . dualis – «двойственный») теорию химических соединений. В соответствии с этой теорией, предполагалось, что каждое химическое соединение состоит из двух частей – положительно и отрицательно заряженных. В 1811 г. Берцелиус, исходя из химических свойств известных ему элементов, расположил их в ряд так, что каждый член в нем был электроотрицательным по отношению к предшествующему и электроположительным по отношению к последующему. В сокращенном варианте к электроотрицательным элементам были отнесены следующие (в нисходящем порядке):

O, S, N, Cl, Br, S, Se P, As, Cr, B, C, Sb, Te, Si.

Затем следовал переходный элемент – водород, а за ним – электроположительные элементы (в порядке увеличения этого свойства):

Au, Pt, Hg, Ag, Cu, Bi, Sn, Pb, Cd, Co, Ni, Fe, Zn, Mn, Al, Mg, Ca, Sr, Ba, Li, Na, K.

Этот ряд, если переписать все металлы в обратном порядке, весьма близок к современному. Некоторые различия в порядке расположения металлов в этом ряду объясняются, вероятно, недостаточной очисткой веществ во времена Берцелиуса, а также некоторыми другими свойствами металлов, которыми руководствовался Берцелиус. По Берцелиусу, чем дальше отстоят элементы друг от друга в этом ряду, тем больше в них противоположные электрические заряды и тем более прочные химические соединения они друг с другом образуют.

Теория дуализма Берцелиуса в середине XIX в. была господствующей. Ее несостоятельность показали основатели термохимии французский ученый Марселен Бертло и датский исследователь Юлиус Томсен. Они измеряли химическое сродство работой, которую может произвести химическая реакция. На практике ее измеряли по тепловому эффекту реакции. Эти работы привели к созданию химической термодинамики – науки, которая по зволяла, в частности, рассчитывать положение равновесия в реагирующей системе, в том числе равновесие в электрохимических процессах. Теоретическую основу ряда активности (и ряда напряжений) в растворах заложил в конце XIX в. немецкий физикохимик Вальтер Нернст. Вместо качественной характеристики – сродства или способности металла и его иона к тем или иным реакциям – появилась точная количественная величина, характеризующая способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде. Такой величиной является стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов. (Стандартное состояние предполагает, что концентрация ионов в растворе равна 1 моль/л, а давление газов равно 1 атм; чаще всего стандартное состояние рассчитывают для температуры 25 °С.)

Стандартные потенциалы наиболее активных щелочных металлов были рассчитаны теоретически, поскольку измерить их экспериментально в водных растворах невозможно. Для расчета потенциалов металлов при разных концентрациях их ионов (т. е. в нестандартных состояниях) используют уравнение Нернста. Электродные потенциалы определены не только для металлов, но и для множества окислительно‑восстановительных реакций с участием как катионов, так и анионов. Это позволяет теоретически предсказывать возможность протекания разнообразных окислительно‑восстановительных реакций в различных условиях. Следует отметить также, что в неводных растворах потенциалы металлов будут другими, так что последовательность металлов в ряду может заметно измениться. Например, в водных растворах потенциал медного электрода положителен (+0,24 В) и медь расположена правее водорода. В растворе же ацетонитрила СН3СN потенциал меди отрицателен (–0,28 В), т. е. медь расположена левее водорода. Поэтому в этом растворителе идет такая реакция: Cu + 2HCl = CuCl2 + H2.

Теперь настало время, чтобы ответить на третий вопрос и выяснить, что же именно изучил Бекетов и к каким выводам он пришел.

Один из виднейших русских химиков Н. Н. Бекетов после окончания (в 1848 г.) Казанского университета работал некоторое время в Медико‑хирургической академии в лаборатории Н. Н. Винина, затем в Петербургском университете, а с 1855 по 1886 г. – в Харьковском университете. Вскоре после получения в 1857 г. университетской кафедры химии Бекетов отправился на год за границу «с назначением сверх получаемого содержания тысячи рублей в год» – по тем временам это была крупная сумма. Во время пребывания в Париже он опубликовал (на французском языке) результаты своих выполненных ранее в России исследований о вытеснении некоторых металлов из растворов водородом и о восстановительном действии паров цинка. На заседании Парижского химического общества Бекетов доложил работу о восстановлении SiCl4 и BF3 водородом. Это были первые звенья в цепи исследований, посвященных вытеснению одних элементов другими, которые Бекетов начал в 1856‑м и закончил в 1865 г.

Уже за границей Бекетов обратил на себя внимание. Достаточно процитировать слова Д. И. Менделеева, с которым Бекетов встретился в Германии: «Из русских химиков за границей я узнал Бекетова… Савича, Сеченова. Это все… такие люди, которые делают честь России, люди, с которыми рад‑радехонек, что сошелся».

В 1865 г. в Харькове была издана диссертация Бекетова «Исследование над явлениями вытеснения одних элементов другими». Эта работа была переиздана в Харькове в 1904 г. (в сборнике «В память 50‑летия ученой деятельности Н. Н. Бекетова») и в 1955 г. (в сборнике «Н. Н. Бекетов. Избранные произведения по физической химии»).

Ознакомимся с этим трудом Бекетова более подробно. Он состоит из двух частей. В первой части (в ней шесть разделов) весьма подробно излагаются результаты экспериментов автора. Первые три раздела посвящены действию водорода на растворы солей серебра и ртути при различных давлениях. Бекетову казалось чрезвычайно важной задача выяснения места водорода в ряду металлов, а также зависимость направления реакции от внешних условий – давления, температуры, концентрации реагентов. Он проводил опыты как в растворах, так и с сухими веществами. Химикам было хорошо известно, что водород легко вытесняет некоторые металлы из их оксидов при высоких температурах, но неактивен при низких температурах. Бекетов выяснил, что активность водорода увеличивается с повышением давления, что он связал с «большей густотой» реагента (сейчас сказали бы – с более высоким давлением, т. е. концентрацией газа).

Изучая возможность вытеснения металлов водородом из растворов, Бекетов поставил ряд довольно рискованных экспериментов. Впервые в истории химии Бекетов применил давления, превышающие 100 атм. Опыты он проводил в темноте, в запаянных стеклянных трубках с несколькими изгибами (коленами). В одно колено он помещал раствор соли, в другое – кислоту, а в конец трубки – металлический цинк. Наклоняя трубку, Бекетов заставлял цинк падать в кислоту, взятую в избытке. Зная массу растворившегося цинка и объем трубки, можно было оценить достигаемое давление водорода. В некоторых опытах Бекетов уточнил давление по степени сжатия воздуха жидкостью в тонком капилляре, припаянном к трубке. Вскрытие трубки всегда сопровождалось взрывом. В одном из опытов, в котором давление достигало 110 атм, взрыв при вскрытии трубки (оно проводилось в воде под опрокинутым цилиндром) вдребезги разбил толстостенный цилиндр, объем которого в тысячу раз превышал объем трубки с реагентами.

Опыты показали, что действие водорода зависит не только от его давления, но и от «крепости металлического раствора», т. е. от его концентрации. Восстановление серебра из аммиачного раствора AgCl начинается еще до полного растворения цинка при давлении около 10 атм – прозрачный раствор буреет (сначала на границе с газом, потом по всей массе), а через несколько дней на стенках оседает серый порошок серебра. При атмосферном давлении реакция не наблюдалась. Восстанавливалось серебро также из нитрата и сульфата, а на ацетат серебра водород действовал и при атмосферном давлении. Из солей ртути при высоком давлении выделялись шарики металла, а вот нитраты меди и свинца восстановить не удалось даже при высоком давлении водорода. Восстановление меди наблюдалось только в присутствии серебра и платины при давлении до 100 атм. Платину Бекетов использовал для ускорения процесса, т. е. как катализатор. Он писал, что платина более способствует вытеснению некоторых металлов, чем давление, так как водород на поверхности платины «подвергается большему притяжению и должен иметь наибольшую плотность». Сейчас мы знаем, что адсорбированный на платине водород активируется за счет его химического взаимодействия с атомами металла.

В четвертом разделе первой части Бекетов описывает опыты с углекислым газом. Он изучал его действие на растворы ацетата кальция при разных давлениях; обнаружил, что обратная реакция – растворение мрамора в уксусной кислоте при определенном давлении газа прекращается даже при избытке кислоты.

В последних разделах экспериментальной части Бекетов описал действие паров цинка при высокой температуре на соединения бария, кремния, алюминия (последний элемент он называет глинием, как это было принято в те годы). Восстанавливая цинком тетрахлорид кремния, Бекетов впервые получил достаточно чистый кристаллический кремний. Он установил также, что магний восстанавливает алюминий из криолита (фтороалюминат натрия «собственного приготовления») и кремний из его диоксида. В этих опытах была также установлена способность алюминия восстанавливать барий из оксида и калий – из гидроксида. Так, после прокаливания алюминия с безводным оксидом бария (с небольшой добавкой хлорида бария для понижения температуры плавления) образовался сплав, состоящий по результатам анализа, на 33,3 % из бария, остальное – алюминий. В то же время многочасовое прокаливание алюминия с растертым в порошок хлоридом бария не привело ни к каким изменениям.

Не совсем обычная реакция алюминия с КОН проводилась в изогнутом ружейном стволе, в закрытый конец которого помещались куски КОН и алюминий. При сильном накаливании этого конца появлялись пары́ калия, которые конденсировались в холодной части ствола, «откуда добыты несколько кусочков мягкого металла, горящего фиолетовым пламенем». Позднее сходным образом были выделены рубидий и цезий.

Вторая часть труда Бекетова посвящена теории вытеснения одних элементов другими. В этой части Бекетов сначала проанализировал многочисленные экспериментальные данные – как собственные, так и проведенные другими исследователями, в том числе бреславским профессором Фишером, а также Дэви, ГейЛюссаком, Берцелиусом, Вёлером. Особо отмечены «несколько интересных фактов осаждения металлов мокрым путем», обнаруженных английским химиком Уильямом Одлингом. При этом случаи вытеснения одних элементов другими «мокрым путем», т. е. в растворах, и «сухим путем», т. е. при прокаливании реагентов, Бекетов рассматривает совместно. Это было логично, так как невозможно экспериментально провести реакции в водных раст ворах с участием щелочных и щелочноземельных металлов, по скольку они активно реагируют с водой.

Затем Бекетов излагает свою теорию, призванную объяснить различную активность элементов. Расположив все металлы в ряд по их удельному весу (т. е. по плотности), Бекетов обнаружил, что он довольно хорошо согласуется с известным вытеснительным рядом. «Следовательно, – делает вывод Бекетов, – место металла… в вытеснительном ряде может быть довольно верно определено и, так сказать, заранее предсказано его удельным весом». Некоторая неопределенность наблюдается только между «соседними по удельному весу металлами». Так, калий – обычно «более энергичный» элемент и, например, вытесняет натрий из NaCl при прокаливании, хотя калий и более летуч. Однако известны и обратные процессы: например, натрий может вытеснять калий из его гидроксида и ацетата. «Что касается отношения первой щелочной группы ко второй и отношения металлов второй группы между собой, то они еще мало исследованы», – пишет Бекетов.

Бекетов встретился и с более серьезными затруднениями. Например, ему удалось восстановить цинк алюминием из раствора ZnCl2 и не удалось – из раствора ZnSO4. Кроме того, алюминий «совершенно не восстанавливал из растворов железо, никель, кобальт, кадмий». Бекетов объяснил это тем, что алюминий «действует преимущественно на воду», и предполагал, что эти реакции должны пойти в отсутствие воды, – «сухим путем». Действительно, в последующем Бекетов обнаружил такие реакции и фактически открыл алюминотермию.

Другое затруднение заключалось в том, что некоторые металлы выпадали из правила удельных весов. Так, медь (плотность 8,9) в ряду активности расположена не до, а после свинца (плотность 11,4 – значения плотностей у Бекетова немного отличаются от современных). Такая «аномалия» заставила Бекетова попытаться все же вытеснить более активный свинец менее активной медью. Он помещал медные пластинки в горячие насыщенные растворы хлорида свинца – нейтральные и кислые, в аммиачный раствор оксида свинца, нагревал медь с сухими оксидом и хлоридом свинца. Все опыты были неудачны, и Бекетов был вынужден признать «отступление от общего правила». Другие «аномалии» касались серебра (плотность 10,5) и свинца, а также серебра и ртути (плотность 13,5), поскольку и свинец, и ртуть восстанавливают «более легкое» серебро из растворов его солей. Аномалию с ртутью Бекетов объяснил тем, что этот металл жидкий и потому его активность выше, чем следует из правила удельных весов.

Бекетов распространил свое правило и на неметаллы. Например, в ряду хлор (плотность жидкого хлора 1,33), бром (плотность 2,86), йод (плотность 4,54) самый легкий элемент одновременно и самый активный (фтор был получен Муассаном только 20 лет спустя). То же наблюдается и в ряду O, S, Se, Te: кислород – самый активный и довольно легко вытесняет остальные элементы из их соединений с водородом или с щелочным металлом.

Бекетов объяснил свое правило по аналогии с механикой: удельный вес связан с массой частиц (т. е. атомов) и с расстоянием между ними в простом веществе. Зная плотности металлов и их относительные атомные массы, можно рассчитать относительные расстояния между атомами. Чем больше расстояние между ними, тем легче, по Бекетову, атомы разъединяются в химических процессах. С этим же связано и взаимное «сродство» различных элементов, и способность вытеснять друг друга из соединений. Рассчитав относительное расстояние между атомами в разных металлах и приняв за эталон калий, Бекетов получил следующие значения: K – 100, Na – 80, Ca – 65, Mg – 53, Al – 43 и т. д. вплоть до платины.

Дальнейшее краткое изложение теории Бекетова, касающееся относительной прочности химических соединений (а именно с этим связана способность одних элементов вытеснять другие), можно найти в учебнике Д. И. Менделеева «Основы химии» (цитируется по изданию 1947 г. с использованием современной терминологии): «…Профессор Н. Н. Бекетов в сочинении „Исследования над явлениями вытеснения“ (Харьков, 1865), предложил особую гипотезу, которую мы изложим почти словами автора.

Для алюминия оксид Al2O3 прочнее галогенидов AlCl3 и AlI3. В оксиде соотношение Al: O = 112: 100, для хлорида Al: Cl = 25: 100, для йодида Al: I = 7: 100. Для серебра оксид Ag2O (соотношение 1350: 100) менее прочен, чем хлорид (Ag: Cl = = 100: 33), а йодид наиболее прочен (Ag: I = 85: 100). Из этих и подобным им примеров видно, что наиболее прочны те соединения, у которых массы соединяющихся элементов становятся почти одинаковыми. Поэтому существует стремление больших масс соединяться с большими, а малых – с малыми, например: Ag2O + 2KI дают K2O + 2AgI. По той же причине при повышенных температурах разлагаются Ag2O, HgO, Au2O3 и тому подобные оксиды, составленные из неравных масс, тогда как оксиды легких металлов, а также вода разлагаются не так легко. Самые термостойкие оксиды – MgO, CaO, SiO2, Al2O3 приближаются к условию равенства масс. По той же причине HI разлагается легче, чем HCl. Хлор не действует на MgO и Al2O3, но действует на CaO, Ag2O и т. п.

Для понимания истинных отношений сродств, – делает заключение Менделеев, – еще далеко недостаточно и тех дополнений к механической теории химических явлений, которые дает Бекетов. Тем не менее в его способе объяснения относительной прочности многих соединений видна весьма интересная постановка вопросов первостепенной важности. Без подобных попыток невозможно обнять сложные предметы опытных знаний».

Итак, не умаляя заслуг замечательного химика, следует признать, что, хотя теория Н. Н. Бекетова сыграла заметную роль в развитии теоретической химии, приписывать ему установление относительной активности металлов в реакции вытеснения водорода из кислот и соответствующего ряда активности металлов не следует: его механическая теория химических явлений осталась в истории химии как один из многочисленных ее этапов.

Почему же в некоторых книгах Бекетову приписывают то, что он не открывал? Эта традиция, как и многие другие, появилась, вероятно, в конце 40‑х – начале 50‑х гг. ХХ в., когда в СССР свирепствовала кампания борьбы с «низкопоклонством перед Западом», а все более или менее заметные открытия в науке авторы просто обязаны были приписывать исключительно отечественным ученым, и даже цитирование зарубежных авторов считалось крамолой (именно в те годы родилась шутка о том, что «Россия – родина слонов»). Например, М. В. Ломоносову приписывали открытие закона сохранения энергии, который был открыт только в середине XIX века. Вот конкретный пример изложения истории науки тех времен. В книге Владимира Орлова «О смелой мысли» (М.: Молодая гвардия, 1953) изобретения в области электричества описываются такими словами: «Иностранцы разорили колыбель электрического света… Замечательное русское изобретение похитили американцы… Эдисон в Америке жадно принялся усовершенствовать русское изобретение… Зарубежные ученые калечат электрическую лампу, созданную гением русских людей… Американские империалисты опозорили электричество… Вслед за ними югославские фашисты опозорили электрический свет…» – и т. д. и т. п. Отдельные отголоски тех недоброй памяти времен, видимо, и остались в некоторых учебниках, и от них следует избавляться. Как говорил один из историков химии, «Ломоносов достаточно велик, чтобы не приписывать ему чужие открытия».

«Свеча горела…»

Явления, наблюдающиеся при горении свечи, таковы, что нет ни одного закона природы, который при этом не был бы так или иначе затронут.

Майкл Фарадей. История свечи

Этот рассказ посвящен «экспериментальному расследованию». Главное в химии – эксперимент. В лабораториях всего мира поставили и продолжают ставить миллионы разнообразных экспериментов, однако крайне редко профессиональный исследователь делает это так, как некоторые юные химики: а вдруг получится что‑нибудь интересное? Чаще всего у исследователя есть четко сформулированная гипотеза, которую он стремится либо подтвердить, либо опровергнуть экспериментально. Но вот опыт закончен, результат получен. Если с гипотезой он не согласуется, значит, она неверна (конечно, если эксперимент поставлен грамотно и он несколько раз воспроизводится). А если согласуется? Значит ли это, что гипотеза верна и ее пора переводить в категорию теории? Начинающий исследователь порой так и считает, но опытный с выводами не спешит, а прежде крепко думает, нельзя ли объяснить полученный результат как‑нибудь иначе.

Примеров того, как подобное «думанье» полезно, история химии знает тысячи. Следующие три рассказа как раз посвящены тому, как опасно бывает полагать, что «удачный» эксперимент доказывает верность гипотезы. Иногда на уроках показывают такой опыт. В тарелку с водой пускают плавать небольшой деревянный или пенопластовый кружок, на котором укреплена горящая свеча. На кружок со свечой опускают перевернутую стеклянную банку и ставят ее в таком положении на дно тарелки. Через некоторое время свеча гаснет, и часть банки заполняется водой. Этот опыт должен якобы показать, что лишь пятая часть воздуха (кислород) поддерживает горение. Действительно, на первый взгляд похоже, что вода поднялась примерно на пятую часть, хотя более точные измерения обычно не проводят. На первый взгляд опыт прост и достаточно убедителен: ведь кислорода в воздухе действительно 21 % по объему. Однако с точки зрения химии в нем не все в порядке. Действительно, свечи делают из парафина, а парафин состоит из предельных углеводородов состава С n H2 n +2 с 18–35 атомами углерода. Уравнение реакции горения можно в общем виде записать так: С n H2 n +2 + (3 n + 1)/2 O2 → n CO2 + (n + 1)H2O. Так как n велико, то коэффициент перед кислородом очень близок к 1,5 n (для n = 18 разница между (3 n + +1)/2 и 1,5 n составит менее 2 %, для n = 30 она будет еще меньше). Таким образом, на 1,5 объема израсходованного кислорода выделяется 1 объем СО2. Поэтому даже если весь кислород из банки (его там 0,21 по объему) израсходуется, то вместо него после сгорания должно выделиться 0,21: 1,5 = 0,14 объема углекислого газа. Значит, вода вовсе не должна заполнить пятую часть банки!

Но верно ли это рассуждение? Ведь углекислый газ, как известно, хорошо растворяется в воде. Может быть, он весь «уйдет в воду»? Однако процесс растворения этого газа очень медленный. Это показали специальные опыты: чистая вода в перевернутую банку, наполненную СО2, за час почти не поднимается. Эксперимент же со свечой продолжается менее минуты, поэтому даже при условии полного израсходования кислорода вода должна войти в банку всего на 0,21 – 0,1 = 0,07 ее объема (около 7 %).

Но и это не все. Оказывается, свеча «сжигает» в банке далеко не весь кислород, а лишь малую часть его. Анализ воздуха, в котором погасла свеча, показал, что в нем все еще содержится 16 % кислорода (интересно, что примерно до такого же уровня снижается содержание кислорода в нормальном выдохе человека). Значит, вода практически вовсе не должна заходить в банку! Опыт, однако, показывает, что это не так. Как же его объяснить?

Самое простое предположение: горящая свеча нагревает воздух, его объем увеличивается, и часть воздуха выходит из банки. После охлаждения воздуха в банке (это происходит достаточно быстро) давление в ней понижается, и в банку под действием внешнего атмосферного давления заходит вода. В соответствии с законом идеальных газов (а воздух в первом приближении можно считать идеальным газом), чтобы объем воздуха увеличился на 1/5, его температура (абсолютная) также должна увеличиться на 1/5, т. е. повыситься с 293 К (20 °С) до 1,2 · 293 = 352 К (около 80 °С). Не так уж много! Нагрев воздуха пламенем свечи на 60° вполне возможен. Осталось только проверить экспериментально, выходит ли воздух из банки во время опыта.

Первые эксперименты, однако, это предположение как будто не подтвердили. Так, в серии опытов, проведенных с широкогорлой банкой объемом 0,45 л, не было заметно никаких признаков «выбулькивания» воздуха из‑под края банки. Другое неожиданное наблюдение: вода в банку, пока горела свеча, почти не заходила.

И лишь после того, как свеча гасла, уровень воды в перевернутой банке быстро поднимался. Как это объяснить?

Можно было предположить, что, пока свеча горит, воздух в банке нагревается, но при этом увеличивается не его объем, а давление, что и препятствует засасыванию воды. После прекращения горения воздух в банке остывает, его давление падает, и вода поднимается вверх. Однако это объяснение не годится. Во‑первых, вода – не тяжелая ртуть, которая не дала бы воздуху выходить из банки при небольшом увеличении давления. (Ртутный затвор использовали когда‑то все физики и химики, изучавшие газы.) Действительно, вода в 13,6 раза легче ртути, а высота водяного затвора между краем банки и уровнем воды в тарелке мала. Поэтому даже небольшое повышение давления неизбежно вызвало бы «пробулькивание» воздуха через затвор.

Еще серьезнее второе возражение. Даже если уровень воды в тарелке был бы бо́льшим и вода не выпускала бы из банки нагретый воздух, находящийся под повышенным давлением, то после остывания воздуха в банке и его температура, и давление вернулись бы к исходным значениям. Так что не было бы никаких причин для воздуха заходить в банку.

Загадку удалось разрешить, только изменив небольшую деталь в ходе эксперимента. Обычно банку «надевают» на свечу сверху. Так, может быть, в этом и кроется причина странного поведения воздуха в банке? Горящая свеча создает восходящий поток нагретого воздуха, и, когда банка движется сверху, горячий воздух вытесняет из банки более холодный еще до того, как край банки коснется воды. После этого температура воздуха в банке, пока свеча горит, уже мало изменяется, вот воздух и не выходит из нее (а также не заходит внутрь). А после прекращения горения и остывания горячего воздуха в банке давление в ней заметно понижается, и внешнее атмосферное давление загоняет в банку часть воды.

Чтобы проверить это предположение, в нескольких опытах банку «надевали» на свечу не сверху, а сбоку, почти касаясь краем банки пламени, после чего быстрым движением вниз ставили банку на дно тарелки. И сразу же из‑под края банки начинали бурно выходить пузырьки воздуха! Естественно, после прекращения горения свечи вода засасывалась внутрь – примерно до того же уровня, что и в предыдущих опытах.

Так что данный опыт со свечой никак не может иллюстрировать состав воздуха. Зато он еще раз подтверждает мудрое высказывание великого физика, вынесенное в эпиграф.

Приближаемся к равновесию…

Рассмотрим еще одно ошибочное объяснение эксперимента, в котором тоже происходит нагрев газов. Это объяснение проникло и в популярные статьи по химии, и даже в вузовские учебники. Так, в ряде зарубежных учебников по общей химии описывается красивый эксперимент, суть которого мы проиллюстрируем цитатой из учебника Ноэла Уэйта «Химическая кинетика». «Метод релаксации. Метод Эйгена, за который автор был удостоен в 1967 г. Нобелевской премии по химии, называют релаксационным методом. Реагирующая система достигает состояния равновесия при определенных условиях. Эти условия (температура, давление, электрическое поле) затем быстро нарушают – быстрее, чем смещается равновесие. Система снова приходит в равновесие, но теперь уже при новых условиях; это называют „релаксировать к новому положению равновесия”. Пока происходит релаксация, следят за изменение какого‑то свойства системы…

Эксперимент, демонстрирующий явление релаксации.

В некоторых случаях состояние равновесия устанавливается настолько медленно в новых условиях, что за изменением концентрации можно проследить с помощью обычной лабораторной техники и наблюдать тем самым явление релаксации. В качестве примера рассмотрим переход диоксида азота (темно‑бурый газ) в димер (бесцветный газ):

Наполните стеклянный газовый шприц примерно 80 см3 газа. Быстро нажмите поршень шприца и сожмите газ до 50–60 см3. Убедитесь, что окраска газа изменилась. Сначала произойдет быстрое потемнение газа, так как концентрация NО2 возрастет, но затем наступит медленное посветление, поскольку высокое давление способствует образованию N2О4, и равновесие будет достигнуто при новых внешних условиях».

В ряде учебников аналогичное описание приводится, чтобы проиллюстрировать принцип Ле Шателье: при повышении давления газа равновесие смещается в сторону уменьшения числа молекул, в данном случае – в сторону бесцветного димера N2О4. При этом текст сопровождается тремя цветными фотографиями. На них видно, как сразу после сжатия желтовато‑бурая вначале смесь становится темно‑бурой, а на третьей фотографии, сделанной через несколько минут, газовая смесь в шприце заметно светлеет.

Иногда добавляют, что поршень нужно нажимать как можно быстрее, чтобы равновесие за это время не успело сдвинуться.

На первый взгляд такое объяснение выглядит очень убедительно. Однако количественное рассмотрение процессов в шприце полностью опровергает все выводы. Дело в том, что указанное равновесие между диоксидом азота NО2 и его димером (тетраоксидом азота) N2О4 устанавливается чрезвычайно быстро: за миллионные доли секунды! Поэтому невозможно сжать газ в шприце быстрее, чем это равновесие установится. Даже если двигать поршень в стальном «шприце» с помощью взрыва, равновесие, скорее всего, успевало бы установиться по мере движения поршня из‑за его инерционности. Как же еще можно объяснить наблюдаемое в этом эксперименте явление? Конечно, уменьшение объема и соответствующее повышение концентрации газов приводит к усилению окраски. Но не это главная причина. Каждый, кто накачивал ручным насосом велосипедную камеру, знает, что насос (особенно алюминиевый) сильно нагревается. Трение поршня о трубку насоса здесь ни при чем – в этом легко убедиться, сделав несколько холостых качаний, когда воздух в насосе не сжимается. Нагрев происходит в результате так называемого адиабатического сжатия – когда теплота не успевает рассеяться в окружающем пространстве. Значит, и при сжимании смеси оксидов азота она должна нагреваться. А при нагревании равновесие в этой смеси сильно сдвигается в строну диоксида.

Насколько нагреется смесь при сжатии? В случае сжатия воздуха в насосе нагрев легко рассчитать, воспользовавшись уравнением адиабаты для идеального газа: TV γ–1 = const, где Т – температура газа (в кельвинах), V – его объем, γ = С р / С v – отношение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме. Для одноатомных (благородных) газов γ = 1,66, для двухатомных (к ним принадлежит и воздух) γ = 1,40, для трехатомных (например, для NO2) γ = 1,30 и т. д. Уравнение адиабаты для воздуха, сжимаемого от объема 1 до объема 2, можно переписать в виде Т 2/ Т 1 = (V 1/ V 2)γ–1. Если поршень резко вдвинуть до середины насоса, когда объем воздуха в нем уменьшится вдвое, то для отношения температур до и после сжатия получим уравнение Т 2/ Т 1 = = 20,4 = 1,31. И если Т 1 = 293 К (20 °С), то Т 2 = 294 К (111 °С)!

Непосредственно применить уравнение идеальных газов для расчета состояния смеси оксидов азота сразу после сжатия нельзя, так как в этом процессе изменяются не только объем, давление и температура, но и число молей (соотношение NO2 N2O4) в ходе химической реакции. Задачу можно решить только путем численного интегрирования дифференциального уравнения, которое учитывает, что работа, производимая в каждый момент движущимся поршнем, затрачивается, с одной стороны, на нагрев смеси, с другой – на диссоциацию димера. При этом предполагается, что известны энергия диссоциации N2О4, теплоемкости обоих газов, величина γ для них и зависимость положения равновесия от температуры (все это табличные данные). Расчет показывает, что если исходную смесь газов при атмосферном давлении и комнатной температуре быстро сжать до половины объема, то смесь нагреется всего на 13 °С. Если сжать смесь до уменьшения объема втрое, температура повысится уже на 21 °С. А даже небольшое нагревание смеси сильно сдвигает положение равновесия в сторону диссоциации N2О4.

А дальше происходит просто медленное остывание газовой смеси, что вызывает такой же медленный сдвиг равновесия в сторону N2О4 и ослабление окраски, что и наблюдается в эксперименте. Скорость охлаждения зависит от материала стенок шприца, их толщины и других условий теплообмена с окружающим воздухом, например от сквозняков в комнате. Существенно, что при постепенном сдвиге равновесия вправо, в сторону N2О4, происходит димеризация молекул NО2 с выделением тепла, что уменьшает скорость остывания смеси (примерно как замерзание воды в больших водоемах в начале зимы не дает температуре воздуха быстро понижаться).

Почему же никто из экспериментаторов не почувствовал нагрев шприца, когда вдвигал поршень? Ответ очень прост. Теплоемкости газовой смеси и стекла (в расчете на единицу массы) отличаются не очень сильно. Но масса стеклянного поршня в десятки, а иногда и в сотни раз выше, чем масса газа. Поэтому даже если вся теплота остывающей газовой смеси будет передана стенкам шприца, эти стенки нагреются всего на доли градуса.

Рассмотренная система с равновесием между двумя оксидами азота имеет и практическое значение. При небольшом давлении смесь NО2 и N2О4 и легко сжижается. Это позволяет использовать ее как эффективный теплоноситель, несмотря на ее высокую химическую активность и коррозионное действие на аппаратуру. В отличие от воды, которая, принимая тепловую энергию, например, от ядерного реактора, сильно нагревается и даже может испариться, передача теплоты к смеси оксидов азота приводит в основном не к ее нагреву, а к химической реакции – разрыву связи N–N в молекуле N2О4. Действительно, разрыв связи N–N в одном моле вещества (92 г) без его нагрева требует затраты 57,4 кДж энергии. Если такую энергию передать 92 г воды при температуре 20 °С, то 30,8 кДж пойдет на нагрев воды до кипения, а остальные 26,6 кДж приведут к испарению около 11 г воды! В случае же оксидов азота смесь нагревается не сильно, в более холодных местах установки циркулирующая смесь немного охлаждается, равновесие сдвигается в сторону N2О4, и смесь вновь готова отбирать тепло.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «derevyannyydom.ru» — Строим новый дом