Ионизация электронным ударом кратко. Электронный удар. Смотреть что такое "Электронная ионизация" в других словарях

Ионизация под действием электронного удара (ЭУ) наиболее часто применяется в современных масс-спектрометрах. В данном разделе будут рассмотрены устройство ионного источника и основные параметры, определяющие характер масс-спектра.

Принципиальная схема ионного источника ЭУ приведена на рис. 2.1. Бомбардирующие электроны образуются в результате термической эмиссии из нагретого до высокой температуры катода (филамент), изготовленного из рениевой или вольфрамовой проволоки. Электроны ускоряются разностью потенциалов (V ) между катодом (1 ) и анодом (2 ) и попадают в область ионизации. Постоянный магнит (4 ) коллимирует электронный пучок и ограничивает его в узкой спиральной траектории, что увеличивает вероятность взаимодействия электронов с молекулами исследуемого вещества (М 0), которое поступает из системы напуска в парообразном состоянии. Парциальное давление вещества в газообразном состоянии 10 -5 -10 -6 торр.

Ионы, образующиеся в ионном источнике, с помощью ионно-оптической системы формируются в узкий пучок и специальным потенциалом (на рис. 2.1 не показан) выталкиваются из области ионизации, ускоряются с помощью высокого напряжения, которое обычно более 2000 В, и попадают в зону действия масс-анализатора.

Под действием ионизирующих электронов молекулы исследуемого вещества могут претерпевать следующие превращения:

Вероятность протекания того или иного процесса определяется прежде всего энергией ионизирующих электронов, которая выражается в электрон-вольтах (эВ) и равна произведению заряда электрона (з ) на разность потенциалов (V) между катодом и анодом.

Если энергия ионизирующих электронов равна энергии ионизации молекулы, которая для большинства органических соединений лежит в пределах 7-12 эВ, происходит ионизация. Вероятность протекания этого процесса возрастает с увеличением энергии электронов. Одновременно с ионизацией начинает происходить и фрагментация молекулярных ионов. Зависимость выхода молекулярных ионов (величина ионного тока) от энергии ионизирующих электронов, выдаваемая кривой эффективности ионизации , приведена на рис. 2.2. Здесь же приведена аналогичная кривая и для фрагментного иона. Естественно, что эта кривая начинается при более высоких значениях энергии ионизирующих электронов, поскольку энергия появления фрагментарных ионов всегда выше энергии


ионизации. Кривые эффективности ионизации имеют участки крутого подъема ионного тока (обычно до энергии 30-40 эВ), за которым следует область насыщения, где величина ионного тока практически не изменяется с возрастанием энергии ионизирующих электронов.


В большинстве случаев масс-спектры получают при энергии 70 эВ, т.е. в области насыщения. Это позволяет обеспечить наибольшую чувствительность прибора и получение воспроизводимых результатов. Работа при энергии до 30-40 эВ, т.е. на участках крутого подъема, не дает воспроизводимых результатов, поскольку небольшое изменение энергии ионизирующих электронов ведет к заметным колебаниям интенсивности ионного тока. Однако в ряде случаев для аналитических целей используют масс-спектры, полученные при низких энергиях электронов (низковольтные масс-спектры), например, для идентификации молекулярного иона при низкой интенсивности его пика в высоковольтном масс-спектре. В низковольтных масс-спектрах вследствие резкого уменьшения фрагментации увеличивается доля молекулярных ионов в полном ионном токе. Для иллюстрации сказанного выше на рис. 2.3 приведены масс-спектры бензойной кислоты, полученные при различной энергии ионизирующих электронов. Этот пример свидетельствует о том, что снижение энергии электронов дает возможность идентифицировать молекулярный ион, особенно в том случае, когда интенсивность его пика в масс-спектре невелика.

В условиях ЭУ в результате захвата молекулой электрона возможно образование отрицательных ионов. Взаимодействие электрона с молекулой может сопровождаться ее гетеролитическим расщеплением с образованием ионной пары. При низких энергиях электронов, близких к тепловым, обычно происходит резонансный захват электрона. Этот процесс может быть недиссоциативным:

АBC + з > АBC ¬ ?

и диссоциативным:

АBC ¬ ? > [АB] ? + C .

Важными характеристиками ионного источника для ЭУ являются ток катода (ток, который течет по ленточке катода), ток эмиссии (электронный ток между катодом и анодом) и температура ионного источника. Меняя ток эмиссии, можно варьировать чувствительность прибора. Высокая температура (~200-250°С) необходима для перевода молекул образца в газообразное состояние, удаления основной массы исследуемого вещества из ионного источника, что предотвращает его осаждение на элементы источника. Загрязнение источника ионов органическим веществом особенно опасно для изолирующих материалов (фарфор, стекло, кварц), которые в результате загрязнения приобретают значительную проводимость и сильно изменяют подаваемые электростатические потенциалы. Это может приводить к опасному пробою между электродами.

Таким образом, с помощью ЭУ можно анализировать только достаточно летучие соединения, которые могут быть переведены в газообразное состояние, или создавать необходимое парциальное давление пара в ионном источнике (~10 -15 -10 -16 торр.) Термически неустойчивые соединения методом ЭУ исследовать нельзя. Предварительно такие соединения должны быть превращены в их стабильные производные.

Наиболее широко применяемый в современной масс-спектрометрии метод ионизации – электронный удар (рис.1.1). Для того, чтобы ионизировать вещество, необходимо сначала из конденсированной фазы (жидкость, твердое тело) перевести его в газовую фазу, например, нагреть. Затем вещество в газообразном состоянии нужно ввести в источник ионов, где оно подвергается бомбардировке пучком электронов катода. Можно поместить вещество в конденсированной фазе в источник ионов и там его испарить.

Рис. 1.1. Ионизация электронным ударом

Электроны – легкие по сравнению с молекулами отрицательно заряженные частицы – сталкиваясь с молекулами, вырывают из электронных оболочек электроны и превращают молекулы в ионы. При этом молекулы распадаются на заряженные фрагменты по определенному для каждого соединения механизму.

Именно в результате этого процесса в конечном итоге получится масс-спектр.

Другой способ ионизации – это ионизация в ионно-молекулярных реакциях, называемая химической ионизацией. При этом способе источник ионов заполняется каким-либо газом при повышенном давлении (типично используется метан или изобутан, редко аммиак и другие газы). Этот газ ионизируется электронным ударом, а в результате большой популяции молекул в источнике, начинают происходить ионно-молекулярные реакции, ведущие к образованию ионов-реагентов, которые в свою очередь взаимодействуют с молекулами вещества, ведя к их ионизации.

При этом происходит протонирование, т.е. образование положительно заряженных ионов. Вводимые в источник ионов соединения также могут реагировать с медленными (термическими) электронами, которые образуются в плазме источника работающего в режиме химической ионизации. При этом взаимодействии происходит диссоциативный резонансный захват электронов, ведущий к тому, что образуется ион с лишним электроном, т.е. отрицательно заряженный.

Этот метод дает меньше информации о том, как устроена структура молекулы, зато с его помощью легче определить ее молекулярную массу. Это касается в основном положительно заряженных ионов.

Для ряда применений очень удобным может оказаться метод PPNICI (Импульсная попеременная регистрация положительных ионов и отрицательных ионов при химической ионизации). В этом методе от одной съемки образца получаются две хроматограммы (и соответственно две совокупности масс-спектров): одна по положительно заряженным ионам, другая – по отрицательно заряженным. Тандемная масс-спектрометрия (или многостадийная, или многомерная) весьма полезна для того, чтобы использовать информационно значимые ионы, образовавшиеся при химической ионизации, и подвергнуть дополнительной фрагментации, позволяющей выявить структуры фрагментов молекулы.

К сожалению, очень многие органические вещества невозможно испарить без разложения, то есть перевести в газовую фазу. А это значит, что их нельзя ионизировать электронным ударом. Но среди таких веществ почти все, что составляет живую ткань (белки, ДНК и т.д.), физиологически активные вещества, полимеры. Для их ионизации используются, в основном, методы ионизации при атмосферном давлении – ионизация в электроспрее (ESI) (рис. 1.2) или – химическая ионизация при атмосферном давлении – APCI (и ее подвид с дополнительной фотоионизацией – APPI), а также ионизация лазерной десорбцией при содействии матрицы или матрично-активированная лазерная десорбция/ионизация (MALDI, Matrix Assisted Laser Desorbtion/Ionization).

Рис.1.2. Ионизация в электроспрее

В первом случае жидкость (исследуемое вещество разведенное в растворителе) вырывается под давлением вместе с коаксиально подаваемым разогретым газом (азотом) из узкого капилляра (иглы, которая находится под повышенным потенциалом – 5 - 10 кВ) с высокой скоростью и прямо в этой струе мелкодисперсного тумана с оболочек молекул срываются электроны, превращая их в ионы. Большая часть растворителя при движении этой струи переходит в газовую фазу и не попадает в отверстие входного конуса источника ионов API.

В режиме химической ионизации при атмосферном давлении потенциал прикладывается не к игле, через которую поступает жидкость, а к электроду в области распыления, что приводит к образованию коронного разряда. В этом случае фрагментация значительно меньше, чем в предыдущем – электроспрее (ESI).

В методе MALDI лазерный луч вырывает ионы с поверхности мишени, на которую нанесен образец со специально подобранной матрицей.

Рис. 1.3.Ионизация лазерной десорбцией

Эти методы применяются для ионизации относительно мягких соединений, составляющих органическую материю. Мягких означает, что для того, чтобы перевести молекулы органики в ионы, нужны относительно небольшие энергии. Для ионизации неорганических материалов (металлы, сплавы, горные породы и т.д.) требуется использование других методов. Энергии связи атомов в твердом теле гораздо больше, поэтому необходимо использовать значительно более жесткие методы для того, чтобы разорвать эти связи и получить ионы. Многие способы ионизации были опробованы и на сегодняшний день лишь несколько из них применяются в аналитической масс-спектральной практике.

Первый метод, наиболее распространенный, ионизация в индуктивно-связанной плазме. Индуктивно-связанная плазма (ИСП, ICP) образуется внутри горелки, в которой горит обычно аргон. Когда в плазму аргоновой горелки попадают атомы и молекулы, они моментально превращаются в ионы. Для того чтобы ввести атомы и молекулы интересующего материала в плазму, их обычно растворяют в воде и распыляют в плазму в виде мельчайшей взвеси. Другой метод состоит в том, чтобы превратить вещество в газ. Например, это делают с помощью мощного лазерного луча, который взрывает кратер в подставленной под него пробе материала, переводя небольшую его часть в газообразное состояние (лазерная абляция).

Еще один способ – термоионизация или поверхностная ионизация. Анализируемое вещество наносится на проволоку из тугоплавкого металла, по которой пропускается ток, разогревающий ее до высокой температуры. За счет высокой температуры нанесенное вещество испаряется и ионизируется. Этот метод обычно используется в изотопной масс-спектрометрии.

Два других метода могут применяться для ионизации проводящих ток материалов. Это искровая ионизация и ионизация в тлеющем разряде. В первом за счет разницы потенциалов между пробой исследуемого материала и другим электродом пробивается искра, вырывающая с поверхности мишени ионы, а во втором происходит то же самое, но за счет тлеющего разряда.

Надо отметить, что начиная от ионного источника и до детектора масс-спектрометр представляет собой вакуумный прибор. Довольно глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы просто рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).


Особое положение среди методов ионизации органических веществ занимает ионизация электронным ударом. Основными достоинствами этого метода являются надежность и универсальность. Кроме того, в су­ществующих компьютерных библиотеках масс-спектров Wiley и NIST используются именно спектры электронного удара. Теории масс-спектрометрического распада и подходы к интерпретации спектров так­же базируются, в основном, на первоначальном образовании молекуляр­ного катион-радикала в результате электронной ионизации.

Название метода ионизации - электронный удар - несколько не со­ответствует действительности. Реального удара электронов по молекуле не происходит. Электрон, пролетая вблизи молекулы, возбуждает ее электронную оболочку, в результате чего собственные электроны моле­кулы перемещаются на более высокие орбитали и могут выйти за гра­ницы действия ядерных сил. В связи с этим в последнее время термин «электронный удар» все чаще, особенно в англоязычной ли­тературе, заменяется терми­ном «электронная ионизация».

Пучок электронов гене­рируется катодом (проволока или пластина из рения или вольфрама) и ускоряется по­тенциалом 12-70 В по направ­лению к аноду. Ве­щество в газовой фазе при давлении

10 -5 -10 -6 мм рт. ст. Процесс ионизации формально можно представить уравнением

Принципиальная схема

источника электронного удара:

1- катод; 2 - анод; 3 – отверстие

для ввода образца; 4 – выталкивающий электрод

М + е = М +. + 2е -

В результате образуется молекулярный ион М +. . Это нечетно-электронный ион, т. е. катионрадикал.

Эффективность ионизации, как правило, очень низкая. Фактиче­ски ионизируется не более 0,01% молекул. Вероятность ионизации для каждого вещества имеет характеристическое значение, называе­мое сечением ионизации.

Важным параметром ионизации является энергия ионизирующих электронов. В большинстве случаев количество ионизированных мо­лекул достигает максимума при энергиях электронов около 50 эВ. Стандартные масс-спектры электронного удара принято снимать, ис­пользуя ионизирующие электроны с энергией около 70 эВ, что объ­ясняется достигаемой при этом достаточно высокой эффективностью ионизации и стабильностью получаемого масс-спектра.

В процессе ионизации молекулярный ион получает избыточную внутреннюю энергию в диапазоне 0-20 эВ. Эта избыточная энергия равномерно распределяется по всем связям, причем превышение энергии какой-либо связи приводит к ее разрыву с отщеплением ней­трального фрагмента и образованием осколочного иона. Минималь­ная энергия ионизирующих электронов, при которой в масс-спектре помимо молекулярного будет регистрироваться осколочный ион, на­зывается энергией появления данного иона. Чем выше энергия ио­низирующих электронов, тем большее число направлений распада молекулярного иона реализуется. При этом, если избыточная энергия осколочного иона остается высокой, могут идти вторичные процессы его дальнейшего распада. Так как различия в энергии появления ос­колочных ионов незначительны, даже небольшие изменения энергии ионизирующих электронов могут привести к существенным измене­ниям в масс-спектре.


Наряду с однозарядными ионами при ионизации молекул обра­зуются и многозарядные. Количество многозарядных ионов сущест­венно меньше, чем однозарядных; оно зависит, в первую очередь, от структуры молекул и от условий ионизации.

В некоторых случаях, когда необходимо увеличить интенсив­ность пика МГ", используют ионизирующие электроны с энергией 12-20эВ. В этих условиях возрастает только относительная интен­сивность пика М4"* и пиков так называемых перегруппировочных ио­нов по отношению к интенсивности пиков осколочных ионов, тогда как абсолютная интенсивность всех пиков в спектре падает. Кроме того, в таких случаях не реализуются многие направления фрагмен­тации, что приводит к потере определенной части получаемой ин­формации. Однако следует помнить, что если пик молекулярного иона отсутствует в масс-спектре, полученном при энергии иони­зирующих электронов 70 эВ, его не будет и при меньшей энергии электронов. В этом случае можно утверждать, что молекулярный ион данного соединения нестабилен. Следует подчеркнуть, что не­стабильными ионами в условиях электронного удара характеризуется значительное число органических соединений, что является сущест­венным недостатком данного метода ионизации.

Поскольку давление в ионном источнике электронного удара со­ставляет Ю^-КГ3 мм рт. ст., а образец можно нагревать до несколь­ких сотен градусов, в газовую фазу переходят многие органические соединения. Однако для анализа термолабильных, труднолетучих и высокомолекулярных соединений метод ионизации электронным ударом не пригоден. Кроме того, в масс-спектрах, полученных с ис­пользованием ионизации электронным ударом, пик молекулярного иона имеет низкую интенсивность или вообще отсутствует. Широкий разброс ионизирующих электронов по энергиям не позволяет с дос­таточной точностью определять характеристики молекул и ионов (энергии появления и ионизации). Это основные недостатки метода электронного удара, работа над устранением которых привела к соз­данию целого ряда альтернативных методов ионизации.

Электрический ток в газах.

Несамостоятельный электрический разряд. Опыт показывает, что две разноименно заряженные пластины, разделенные слоем воздуха, не разряжаются.

Обычно вещество в газообразном состоянии является изолятором, так как атомы или молекулы, из которых оно состоит, содержат одинаковое число отрицательныхи положительных электрических зарядов и в целом нейтральны.

Внесем в пространство между пластинами пламя спички или спиртовки (рис. 164).

При этом электрометр начнет быстро разряжаться. Следовательно, воздух под действием пламени стал проводником. При вынесении пламени из пространства между пластинами разряд электрометра прекращается. Такой же результат можно получить, облучая пластины светом электрической дуги. Эти опыты доказывают, что газ может стать проводником электрического тока.

Явление прохождения электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия, называется несамостоятельным электрическим разрядом.

Термическая ионизация. Нагревание газа делает его проводником электрического тока, потому что часть атомов или молекул газа превращается в заряженные ионы.

Для отрыва электрона от атома необходимо совершить работу против сил кулоновского притяжения между положительно заряженным ядром и отрицательным электроном. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома или молекулы, называется энергией связи.

Электрон может быть оторван от атома при соударении двух атомов, если их кинетическая энергия превышает энергию связи электрона. Кинетическая энергия теплового движения атомов или молекул прямо пропорциональна абсолютной температуре, поэтому с повышением температуры газа увеличивается число соударений атомов или молекул, сопровождающихся ионизацией.

Процесс возникновения свободных электронов и положительных ионов в результате столкновений атомов и молекул газа при высокой температуре называется термической ионизацией.

Плазма. Газ, в котором значительная часть атомов или молекул ионизована, называется плазмой. Степень термической ионизации плазмы зависит от температуры. Например, при температуре 10 000 К ионизовано меньше 10 % общего числа атомов водорода, при температуре выше 20 000 К водород практически полностью ионизован.

Электроны и ионы плазмы могут перемещаться под действием электрического поля. Таким образом, при низких температурах газ является изолятором, при высоких температурах превращается в плазму и становится проводником электрического тока.



Фотоионизация. Энергия, необходимая для отрыва электрона от атома или молекулы, может быть передана светом. Ионизация атомов или молекул под действием света называется фотоионизацией.

Самостоятельный электрический разряд . При увеличении напряженности электрического поля до некоторого определенного значения, зависящего от природы газа и его давления, в газе возникает электрический ток и без воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не зависящего от действия внешних ионизаторов, называется самостоятельным электрическим разрядом.

В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при напряженности электрического поля, равной примерно

Основной механизм ионизации газа при самостоятельном электрическом разряде - ионизация атомов и молекул вследствие ударов электрона.

Ионизация электронным ударом. Ионизация электронным ударом становится возможной тогда, когда электрон при свободном пробеге приобретет кинетическую энергию, превышающую энергию связи W электрона с атомом.

Кинетическая энергия Wк электрона, приобретаемая под действием электрического поля напряженностью, равна работе сил электрического поля:

где l - длина свободного пробега.

Отсюда приближенное условие начала ионизации электронным ударом имеет вид

Энергия связи электронов в атомах и молекулах обычно выражается в электронволътах (эВ). 1 эВ равен работе, которую совершает электрическое поле при перемещении электрона (или другой частицы, обладающей элементарным зарядом) между точками поля, напряжение между которыми равно 1 В:

Энергия ионизации атома водорода, например, равна 13,6 эВ.

Механизм самостоятельного разряда. Развитие самостоятельного электрического разряда в газе протекает следующим образом. Свободный электрон под действием электрического поля приобретает ускорение. Если напряженность электрического поля достаточно велика, электрон при свободном пробеге настолько увеличивает кинетическую энергию, что при соударении с молекулой ионизует ее.

Первый электрон, вызвавший ионизацию молекулы, и второй электрон, освобожденный в результате ионизации, под действием электрического поля приобретают ускорение в направлении от катода к аноду. Каждый из них при следующих соударениях освобождает еще по одному электрону и общее число свободных электронов становится равным четырем. Затем таким же образом оно увеличивается до 8, 16, 32, 64 и т. д. Число свободных электронов, движущихся от катода к аноду, нарастает лавинообразно до тех пор, пока они не достигнут анода (рис. 165).

Положительные ионы, возникшие в газе, движутся под действием электрического поля от анода к катоду. При ударах положительных ионов о катод и под действием света, излучаемого в процессе разряда, с катода могут освобождаться новые электроны. Эти электроны в свою очередь разгоняются электрическим полем и создают новые электронно-ионные лавины, поэтому процесс может продолжаться непрерывно.

Концентрация ионов в плазме по мере развития самостоятельного разряда увеличивается, а электрическое сопротивление разрядного промежутка уменьшается. Сила тока в цепи самостоятельного разряда обычно определяется лишь внутренним сопротивлением источника тока и электрическим сопротивлением других элементов цепи.

Искровой разряд. Молния. Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то происходящий самостоятельный разряд называется искровым разрядом. Искровой разряд прекращается через короткий промежуток времени после начала разряда в результате значительного уменьшения напряжения. Примеры искрового разряда - искры, возникающие при расчесывании волос, разделении листов бумаги, разряде конденсатора.

Самостоятельный электрический разряд представляют собой и молнии, наблюдаемые во время грозы. Сила тока в канале молнии достигает 10 000-20 000 А, длительность импульса тока составляет несколько десятков микросекунд. Самостоятельный электрический разряд между грозовым облаком и Землей после нескольких ударов молнии сам собою прекращается, так как большая часть избыточных электрических зарядов в грозовом облаке нейтрализуется электрическим током, протекающим по плазменному каналу молнии (рис. 166).

При увеличении силы тока в канале молнии происходит нагревание плазмы до температуры свыше 10 000 К. Изменения давления в плазменном канале молнии при увеличении силы тока и прекращении разряда вызывают звуковые явления, называемые громом.

Тлеющий разряд . При понижении давления газа в разрядном промежутке разрядный канал становится более широким, а затем светящейся плазмой оказывается равномерно заполнена вся разрядная трубка. Этот вид самостоятельного электрического разряда в газах называется тлеющим разрядом (рис. 167).

Электрическая дуга. Если сила тока в самостоятельном газовом разряде очень велика, то удары положительных ионов и электронов могут вызвать разогревание катода и анода. С поверхности катода при высокой температуре происходит эмиссия электронов, обеспечивающая поддержание самостоятельного разряда в газе. Длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии с катода, называется дуговым разрядом (рис. 168).

Коронный разряд. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом и плоскостью (линия электропередачи), возникает самостоятельный разряд особого вида, называемый коронным разрядом. При коронном разряде ионизация электронным ударом происходит лишь вблизи одного из электродов, в области с высокой напряженностью электрического поля.

Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к возбуждению атомов и молекул, сопровождающемуся излучением света. Световое излучение плазмы самостоятельного электрического разряда широко используется в народном хозяйстве и в быту. Это лампы дневного света и газоразрядные лампы уличного, освещения, электрическая дуга в кинопроекционном аппарате и ртутно-кварцевые лампы, применяемые в больницах и поликлиниках.

Высокая температура плазмы дугового разряда позволяет применять его для резки и сварки металлических конструкций, для плавки металлов. С помощью искрового разряда ведется обработка деталей из самых твердых материалов.

Электрический разряд в газах бывает и нежелательным явлением, с которым в технике необходимо бороться. Так, например, коронный электрический разряд с проводов высоковольтных линий электропередач приводит к бесполезным потерям электроэнергии. Возрастание этих потерь с увеличением напряжения ставит предел на пути дальнейшего увеличения напряжения в линии электропередач, тогда как для уменьшения потерь энергии на нагревание проводов такое повышение весьма желательно.

Рекомбнация.

Рекомбинация - процесс, обратный ионизации. Состоит в захвате ионом свободного электрона. Рекомбинация приводит к уменьшению заряда иона или к превращению иона в нейтральный атом или молекулу. Возможна также рекомбинация электрона и нейтрального атома (молекулы), приводящая к образованию отрицательного иона, и в более редких случаях - рекомбинация отрицательного иона с образованием двух- или трехкратно заряженного отрицательного иона. Вместо электрона в некоторых случаях могут выступать другие элементарные частицы, например мезоны, создавая мезоатомы или мезомолекулы. На ранних этапах развития вселенной происходила реакция рекомбинации водорода.

Рекомбинация - это процесс, обратный разрыву химической связи. Рекомбинация связана с образованием ординарной ковалентной связи за счёт обобществления неспаренных электронов, принадлежащих разным частицам (атомам, свободным радикалам)

Примеры рекомбинации:

H + H → H2 + Q ;

Cl + Cl → Cl2 + Q ;

CH3 + CH3 → C2H6 + Q и др.

Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить определенную энергию. Минимальное значение такой энергии называется энергией ионизации молекулы (атома), ее значение для атомов различных веществ лежат в пределах 425эВ.

Одновременно с процессом ионизации газа всегда идет и обратный процесс – процесс рекомбинации: положительные и отрицательные ионы и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации. В результате рекомбинации проводимость газа пропадает или возвращается к своему исходному значению.

Как говорилось выше, для отрыва электрона от атома (ионизация атома) необходима затрата определенной энергии. При рекомбинации положительного иона и электрона эта энергия, напротив, освобождается. Чаще всего она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации также будет большим, и свечение рекомбинации может быть большим, и свечение рекомбинации может быть очень сильным.

Ионизация под действием внешнего ионизатора принимается во внимание только в случае сравнительно слабых электрических полей, когда кинетическая энергия eEL, накопленная электроном (или ионом) на длине свободного пробега L меньше энергии ионизации Ei

и, следовательно, при столкновении с нейтральными частицами электроны лишь изменяют направление движения (упругое рассеяние).

Помимо данной ионизации возможна ионизация электронными ударами.

3.2 Ионизация электронными ударами.

Данный процесс заключается в том, что свободный движущийся электрон, обладающий достаточной кинетической энергией при соударении с нейтральным атомом выбивает один (или несколько) из атомных электронов. В результате этого нейтральный атом превращается в положительный ион, (который также может ионизировать газ) и, кроме первичного, появляются новые электроны, которые ионизируют еще атомы, Таким образом, число электронов будет лавинообразно нарастать, этот процесс называется электронной лавиной. Этот вид ионизации наблюдается при сильных полях, когда

Для количественной характеристики ионизирующей способности электронов и ионов Таунсенд (1868 – 1957) ввел два «коэффициента объемной ионизации» и . определяется как среднее число ионов одного знака, производимое электроном на единице длины своего пути. Такой же смысл имеет коэффициент , характеризующий ионизующую способность положительных ионов. Коэффициент ионизации электронами значительно превосходит коэффициент ионизации положительными ионами .

Следующий классический опыт Таунсенда доказывает это утверждение.

Опыт: Берется Ионизационная камера в виде цилиндрического конденсатора, внутренним электродом которого служит тонкая металлическая нить (рис. 1). Между нитью и наружным цилиндром конденсатора прикидывается разность потенциалов V, достаточная для того, чтобы в объеме камеры происходила ударная ионизация газа. Последняя практически будет происходить лишь вблизи нити, где электрическое поле очень сильное, Допустим, что на нить подан положительный потенциал. Тогда к нити устремятся электроны и будут вблизи нее ионизовать газ. Положительные же ионы, устремляясь к наружному цилиндру, пройдут через область слабого поля и практически никакой ионизации не вызовут. Изменим теперь полярность напряжения V не меняя его величину. Тогда роли положительных и отрицательных ионов поменяются местами. К нити устремятся положительные ионы, и ионизация в камере будет возбуждаться практически только ими. Опыт показывает, что в первом случае ионизационный ток больше и быстрее растет с напряжением V, чем во втором (рис. 2 кривая I относится к случаю когда внутренний электрод положителен, а кривая II – к случаю когда он отрицателен).

Таким образом, главную роль играет ионизация ударами электронов , по сравнению с которой ионизацией положительными ионами во многих случаях можно пренебречь.

3.3 Самостоятельный и несамостоятельный разряд.

Прежде, чем перейти к рассмотрению теории Таунсенда дадим понятие самостоятельного и несамостоятельного разряда.

Разряд, существующий только при действии внешнего ионизатора, называется несамостоятельным разрядом .

Если ионы, необходимые для поддержания электропроводимости газа, создается самим разрядом (в результате процессов происходящих в разряде), такой газовый разряд называется самостоятельным.

Теория Таусенда прохождения электрического тока через газ.

В ней учитывается ударная ионизация атомов и молекул газа электронами и положительными ионами. Для простоты электроды разрядной трубки будем считать плоскими. Рекомбинацией ионов и электронов пренебрежем, предполагая, что за время прохождения между катодом и анодом эти частицы рекомбинировать не успевают. Кроме того, ограничимся стационарным режимом, когда все величины, характеризующие разряд, не зависят от времени. Поместим начало координат на поверхность катода К, направив ось Х в сторону анода А. Пусть ne(x) и np(x) – концентрации электронов и положительных ионов, а ve и vp – их средние дрейфовые скорости. Возьмем в газе бесконечно тонкий плоский слой. Через эту площадку слева в слой ежесекундно входит ne(x) vp(x) электронов, а справа выходит ne(x+dx) ve(x+dx). В объеме dx слоя из-за ионизации электронами ежесекундно возникает ne vedx электронов и столько же положительных ионов, Аналогично из-за ионизации положительными ионами образуется npvpdx электронов и столько же положительных ионов. Наконец, может существовать внешний источник ионизации, создающий ежесекундно q пар ионов в единице объема газа. А так как в случае стационарности процесса число электронов в слое не меняется, то должно выполнятся соотношение

ne(x)ve(x)-ne(x+dx)ve(x+dx) + (neve + npvp)dx +qdx=0

Аналогично, для положительных ионов, движущихся от анода к катоду,

np(x+dx)vp(x+dx) – np(x)vp(x) + (neve + npvp)dx +qdx=0

Заменяя разности соответствующими дифференциалами и сократив на dx, получим

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «derevyannyydom.ru» — Строим новый дом